An Electric Unicycle, In Minimalist Form

When self balancing scooters hit the market a few years ago they brought alongside them a range of machines, from the hoverboard kids toys which have provided so many useful parts, to the stand-astride electric unicycles. These last machines have a bulky battery and controller box atop the wheel, and [Dycus] set his sights on this by transferring it to a backpack with the vehicle’s IMU sensor relocated to one of the pedals.

Such a job is not merely a simple case of rewiring with some longer cables, as a first challenge the IMU communicates via I2C which isn’t suitable for longer distances. This is solved by a chipset which places the I2C on a differential pair, but even then it’s not quite a case of stepping on and zipping about. The PID parameters of the balancing algorithm on a stock machine are tuned for the extra weight of the battery on top, and these needed to be modified. Fortunately there have been enough people hacking the STM microcontroller and firmware involved for this task to be achievable, but we’d rate it as still something not for the faint-hearted.

The final result can be seen in the video below, and the quality of the physical work shows as very high. The former battery box is repurposed into a stylish backpack, and though the newly minimalist foot pedals and wheel are a little less easy to get going he zips around with ease.

Hungry for more? This ain’t the first we’ve shown you.

Continue reading “An Electric Unicycle, In Minimalist Form”

What do we want? Monowheel!

Monowheel Mayhem: When Good Gyroscopic Precession Goes Bad

Since the dawn of the age of the automobile, motorheads have been obsessed with using as few wheels as possible. Not satisfied with the prospect of being incompletely maimed by a motorcycle, the monocycle was born. Gracing the covers of Popular magazines and other periodicals, these futuristic wheels of doom have transfixed hackers of all kinds. [James Bruton] is one such hacker, and in the video below the break you can see his second iteration of a 3d printed monowheel.

[James]’ wonderful monowheel is beautifully engineered. Bearing surfaces, gears, idlers, motors, and yes, twin gyroscopes are all contained within the circumference of the tire. The gyroscopes are actuated by a rather large servo, and are tied together by a gear that keeps their positions in sync. Their job is to keep the monowheel balanced at all times.

But as [James] discovered, the chief difficulty of only having one wheel isn’t lateral balancing. Ask any monocyclist and they’ll assure you that it’s possible. The real trick is balancing the machine fore and aft. Unlike a two wheeled velocipede, the monowheel has nothing to exert torque against save for a bit of gravity.

As [James] found out the hard way, it was within this fore-aft balancing act that the gyroscopic precession reared its ugly head. The concept is explained well in the video. We won’t spoil the surprise ending because the explanation and conclusion are quite good so make sure to watch to the end!

If you’d like to look at [James]’ first version, we covered it here. And if you’re the daredevil type, perhaps we can interest in you in a two stroke human sized monowheel that will probably end in an ER visit. At least they wore a helmet. Thanks to [Baldpower] for the tip!

Continue reading “Monowheel Mayhem: When Good Gyroscopic Precession Goes Bad”

Sam testing the motor on his ebike

E-MonoWheel

Generally, monowheels are that wacky, wildly futuristic transport that we lump in the same category as hoverbikes and jetpacks: strange, currently impractical, but very cool. Not content with waiting for the distant future, [Sam Barker] made his own electric monowheel. (Video, embedded below.)

The hardest part of any monowheel is that the outside rim needs to stand enormous abuse. It supports the weight of the vehicle and provides most of the structural integrity, but also is the means of propulsion. [Sam]’s first thought was to use a trampoline frame as it is a round and reasonably sturdy tube steel. He 3D printed the rollers that connected the subframe to the trampoline frame. Flat bar stock was used to make the angles inside the subframe and straight tube steel connected the inner frame into a trapezoid. The trampoline frame was welded together and on the first test spin, it broke apart from the stress. It simply wasn’t strong enough.

Not to be dissuaded, he found a company that bends steel into custom shapes. He stole the e-bike kit from another bike he had converted earlier, and the wheel was turning. Some handles and foot-pedal later, it was time for a proper test drive. Overall, the result is pretty impressive and the double-takes [Sam] gets while riding down streets in town are wonderful. If you’re looking to scratch the monowheel itch, check out this wooden monowheel.

Continue reading “E-MonoWheel”

Wooden Monowheel Build Is Simplicity Itself

Monowheels are nothing new, first being patented in the middle of the 19th century, but never really went mainstream due to, well, quite a lot of obvious issues. We’ve got problems with forward visibility, stability, steering, especially at speed, and the hilariously-named ‘gerbiling’ where the rider can spin around inside the wheel akin to a gerbil in a wheel. Fun times! But obviously that didn’t stop [The Q] from adding to the monowheel corpus by building one out of wood.

Sometimes people take on these projects simply for a laugh, like this bright orange one we covered a while back. Sometimes they’re powered by a motor, be it electric or internal combustion. Some are hand-cranked, some are pedal-powered, its all been tried.

[The Q] is no stranger to interesting wooden builds, and this video from a year ago shows him building a very simple direct-pedal-drive monowheel. The vast majority of the structure is wood, glued and screwed the old-fashioned way, with a bit of metalwork where necessary. We particularly like the simple counterweight solution which doubles up as a parking brake. It may look a little ungainly, but we can’t think of a simpler solution that would make much sense.

The build video after the break is six and half minutes of well executed videography for your viewing pleasure.

Continue reading “Wooden Monowheel Build Is Simplicity Itself”

Monowheel Balancing Robot Can’t Turn (Yet)

Self-balancing robots have become a common hobby project, and they usually require two wheels to work. [James Bruton] has managed to single wheel balancing robot by adding gyroscopic stabilization.

[James] has done other self-balancing robots, like his Sonic robot, but recently started experimenting with gyroscopic stabilization. In that project, he proposed the idea of combining the two stabilization methods to create a monowheel robot, and he followed through on that idea. The wheel is powered by a brushless motor and is stabilized conventionally around the wheel’s axis. Side to side balancing is achieved using a phenomenon known as gyroscopic precession, by tilting a pair of heavy spinning wheels. This is not to be confused with reaction wheels, which use rotational inertia for control. It appears the actuating the gyroscopes also affects the front-to-back stabilization, so at the moment the robots won’t stay on one spot. [James] plans to implement a second observation controller in software to solve this.

Another challenge with this robot is that it cannot turn at the moment. The gyroscopes are not in the correct orientation to effect rotation around the vertical axis, and changing their orientation would cause other problems. A fan, which works like a helicopter’s tail rotor is one option, and a reaction wheel on top might also work. We’re partial to the reaction wheel idea. Having a different mechanical control mechanism for each axis would make it quite an interesting robot.

Continue reading “Monowheel Balancing Robot Can’t Turn (Yet)”

One Wheel Is All We Need To Roll Into Better Multirotor Efficiency

Multirotor aircraft enjoy many intrinsic advantages, but as machines that fight gravity with brute force, energy efficiency is not considered among them. In the interest of stretching range, several air-ground hybrid designs have been explored. Flying cars, basically, to run on the ground when it isn’t strictly necessary to be airborne. But they all share the same challenge: components that make a car work well on the ground are range-sapping dead weight while in the air. [Youming Qin et al.] explored cutting that dead weight as much as possible and came up with Hybrid Aerial-Ground Locomotion with a Single Passive Wheel.

As the paper’s title made clear, they went full minimalist with this design. Gone are the driveshaft, brakes, steering, even other wheels. All that remained is a single unpowered wheel bolted to the bottom of their dual-rotor flying machine. Minimizing the impact on flight characteristics is great, but how would that work on the ground? As a tradeoff, these rotors have to keep spinning even while in “ground mode”. They are responsible for keeping the machine upright, and they also have to handle tasks like steering. These and other control algorithm problems had to be sorted out before evaluating whether such a compromised ground vehicle is worth the trouble.

Happily, the result is a resounding “yes”. Even though the rotors have to continue running to do different jobs while on the ground, that was still far less effort than hovering in the air. Power consumption measurements indicate savings of up to 77%, and there are a lot of potential venues for tuning still awaiting future exploration. Among them is to better understand interaction with ground effect, which is something we’ve seen enable novel designs. This isn’t exactly the flying car we were promised, but its development will still be interesting to watch among all the other neat ideas under development to keep multirotors in the air longer.

[IROS 2020 Presentation video (duration 10:49) requires no-cost registration, available until at least Nov. 25th 2020. Forty-two second summary embedded below]

Continue reading “One Wheel Is All We Need To Roll Into Better Multirotor Efficiency”

Homebuilt Onewheel Uses Hoverboard Parts

Since Back To The Future II first screened back in 1989, people have been waiting for hoverboards to become reality. Instead, we got a dangerous two-wheeled contraption going by the same name. Wanting something a little cooler, [Bartek Plonek] decided to convert his to a one-wheel design. (Video, embedded below.)

The hack starts by machining the hub motors of the hoverboard. They’re bolted together, and used as the hub of a single larger wheel. Care is necessary to avoid cracking the motor housing during this process, as [Bartek] found during his first attempt. The wheel is then fitted to the centre of a steel frame, upon which two halves of a skateboard are attached to act as a footplate. The original hoverboard controller is still used; we’d love to know if firmware modification was required to work with the new motor configuration.

It’s a classic garage hack that results in a viable personal electric vehicle. Plus, cornering is far easier, with the DIY onewheel capable of carving back and forth quite well. We’ve seen others aim to commute using similar builds.

Continue reading “Homebuilt Onewheel Uses Hoverboard Parts”