Russian Anti-Satellite Weapon Test Draws Widespread Condemnation

On the morning of November 15, a Russian missile destroyed a satellite in orbit above Earth.  The successful test of the anti-satellite weapon has infuriated many in the space industry, put astronauts and cosmonauts alike at risk, and caught the attention of virtually every public and private space organisation on the planet.

It’s yet another chapter in the controversial history of military anti-satellite operations, and one with important implications for future space missions. Let’s examine what happened, and explore the greater context of the operation.

Continue reading “Russian Anti-Satellite Weapon Test Draws Widespread Condemnation”

Robot astronaut gazing at the moon

NASA’s New Moon Missions Are Happening Really Soon

NASA first landed a human on the moon back in 1969, and last achieved the feat in December 1972. In the intervening years, there have been few other missions to Earth’s primary natural satellite. A smattering of uncrewed craft have crashed into the surface, while a mere handful of missions have achieved a soft landing, with none successful from 1976 to 2013.

However, NASA aims to resume missions to the lunar surface, albeit in an uncrewed capacity at this stage. And you won’t have to wait very long, either. The world’s premier space agency aims to once again fly to the Moon beginning in February 2022.

Continue reading “NASA’s New Moon Missions Are Happening Really Soon”

An Emulator For OBP, The Spaceflight Computer From The 1960s

[David Given] frequently dives into retrocomputing, and we don’t just mean he refurbishes old computers. We mean things like creating a simulator and assembler for the OBP spaceflight computer, which was used in the OAO-3 Copernicus space telescope, pictured above. Far from being a niche and forgotten piece of technology, the On-Board Processor (OBP) was used in several spacecraft and succeeded by the Advanced On-board Processor (AOP), which in turn led to the NASA Standard Spaceflight Computer (NSSC-1), used in the Hubble Space Telescope. The OBP was also created entirely from NOR gates, which is pretty neat.

One thing [David] learned in the process is that while this vintage piece of design has its idiosyncrasies, in general, the architecture has many useful features and is pleasant to work with. It is a bit slow, however. It runs at a mere 250 kHz and many instructions take several cycles to complete.

Sample of the natural-language-looking programming syntax for the assembler. (Example from page 68 of the instruction set manual for the OBP.)

One curious thing about the original assembler was documentation showing it was intended to be programmed in a natural-language-looking syntax, of which an example is shown here. To process this, the assembler simply mapped key phrases to specific assembly instructions. As [David] points out, this is an idea that seems to come and go (and indeed the OBP’s successor AOP makes no mention whatsoever of it, so clearly it “went”.) Since a programmer must adhere to a very rigid syntax and structure anyway to make anything work, one might as well just skip dealing with it and write assembly instructions directly, which at least have the benefit of being utterly unambiguous.

We’re not sure who’s up to this level of detail, but embedded below is a video of [David] coding the assembler and OBP emulator, just in case anyone has both an insatiable vintage thirst and a spare eight-and-a-half hours. If you’d prefer just the files, check out the project’s GitHub repository.

Continue reading “An Emulator For OBP, The Spaceflight Computer From The 1960s”

NASA Sets Eyes On Deep Space With Admin Shuffle

Since the Apollo 17 crew returned from the Moon in 1972, human spaceflight has been limited to low Earth orbit (LEO). Whether they were aboard Skylab, Mir, the Space Shuttle, a Soyuz capsule, or the International Space Station, no crew has traveled more than 600 kilometers (372 miles) or so from the Earth’s surface in nearly 50 years. Representatives of the world’s space organizations would say they have been using Earth orbit as a testing ground for the technology that will be needed for more distant missions, but those critical of our seemingly stagnated progress into the solar system would say we’ve simply been stuck.

Many have argued that the International Space Station has consumed an inordinate amount of NASA’s time and budget, making it all but impossible for the agency to formulate concrete plans for crewed missions beyond Earth orbit. The Orion and SLS programs are years behind schedule, and the flagship deep space excursions that would have utilized them, such as the much-touted Asteroid Redirect Mission, never materialized. The cracks are even starting to form in the Artemis program, which appears increasingly unlikely to meet its original goal of returning astronauts to the Moon’s surface by 2024.

But with the recent announcement that NASA will be splitting the current Human Exploration and Operations Mission Directorate into two distinct groups, the agency may finally have the administrative capacity it needs to juggle their existing LEO interests and deep space aspirations. With construction of the ISS essentially complete, and the commercial spaceflight market finally coming together, the reorganization will allow NASA to start shifting the focus of their efforts to more distant frontiers such as the Moon and Mars.

Continue reading “NASA Sets Eyes On Deep Space With Admin Shuffle”

NASA Is Looking For A Next-Gen Astronaut Van

Since the Apollo program, astronauts making the nine mile trip from the Operations and Checkout Building to the launch pad have rode in a specialized van that’s become lovingly referred to as the Astrovan. The original van, technically a modified motorhome, was used from 1967 all the way to the first Shuttle missions in 1983. From then on, a silver Airstream Excella emblazoned with the NASA “meatball” carried crews up until the final Shuttle rolled to a stop in 2011.

With crewed flights for the Artemis lunar program on the horizon, NASA has put out a call to companies that want to build a new Crew Transportation Vehicle (CTV). As you might expect from rocket scientists, the space agency has provided an exacting list of specifications for the new CTV, down to the dimensions of the doors and how many amps each of its 12 VDC power jacks must be able to handle. Perhaps most notably, NASA requires that the new 8-seat Astrovan be a zero-emission vehicle; which given the relatively short distance it has to drive, shouldn’t actually be too difficult.

Interior of the Shuttle-era Astrovan

In the document, NASA explains that the new CTV could either be a completely new one-of-a-kind vehicle, or a commercially available vehicle that has been suitably modified, as was the case with the previous vans. But interestingly, it also says they’re open to proposals for refurbishing the Shuttle-era 1983 Airstream and putting it back into service.

This is particularly surprising, as the vehicle is currently part of the Atlantis exhibit at the Kennedy Space Center. Presumably the space agency thinks there would be some bankable nostalgia should Artemis crews ride to the pad in the same van that once carried the Shuttle astronauts, but given the vehicle’s history and the fact that it’s literally a museum piece, it seems somewhat inappropriate. This is after all the very same van that once carried the Challenger and Columbia crews to their ill-fated spacecraft. Luckily, the chances of anyone willing to turn a 1983 Airstream into a zero-emission vehicle seem pretty slim.

If you’re wondering, SpaceX carries astronauts to the pad in specially modified Tesla Model X luxury SUVs, and Boeing has already partnered with Airstream to build their own Astrovan II. There’s still no date on when Boeing might actually get their CST-100 Starliner up to the International Space Station, but at least the van is ready to go.

As ISS Enters Its Final Years, Politics Take Center Stage

There was a time when the idea of an international space station would have been seen as little more than fantasy. After all, the human spaceflight programs of the United States and the Soviet Union were started largely as a Cold War race to see which country would be the first to weaponize low Earth orbit and secure what military strategists believed would be the ultimate high ground. Those early rockets, not so far removed from intercontinental ballistic missiles (ICBMs), were fueled as much by competition as they were kerosene and liquid oxygen.

Space Shuttle docked to Mir space station in 1995.
Atlantis docked to Mir in 1995.

Luckily, cooler heads prevailed. The Soviet Almaz space stations might have carried a 23 mm cannon adapted from tail-gun of the Tu-22 bomber to ward off any American vehicles that got too close, but the weapon was never fired in anger. Eventually, the two countries even saw the advantage of working together. In 1975, a joint mission saw the final Apollo capsule dock with a Soyuz by way of a special adapter designed to make up for the dissimilar docking hardware used on the two spacecraft.

Relations further improved following the dissolution of the Soviet Union in 1991, with America’s Space Shuttle making nine trips to the Russian Mir space station between 1995 and 1997. A new era of cooperation had begun between the world’s preeminent space-fairing countries, and with the engineering lessons learned during the Shuttle-Mir program, engineers from both space agencies began laying the groundwork for what would eventually become the International Space Station.

Unfortunately after more than twenty years of continuous US and Russian occupation of the ISS, it seems like the cracks are finally starting to form in this tentative scientific alliance. With accusations flying over who should take the blame for a series of serious mishaps aboard the orbiting laboratory, the outlook for future international collaboration in Earth orbit and beyond hasn’t been this poor since the height of the Cold War.

Continue reading “As ISS Enters Its Final Years, Politics Take Center Stage”

An Amiga computer at NASA

Retrotechtacular: Amiga Pips The PC For Mission-Critical Computing At NASA

In 1986, a group of NASA engineers faced a difficult choice in solving their data processing woes: continue tolerating the poor performance of PC architecture, or pony up the cash for exotic workstations. It turns out that the Commodore Amiga was an intriguing third choice, except for the fact that, paradoxically, it didn’t cost enough. Oh, and Apple wanted nothing to do with any of it.

Steeped in history, NASA’s Hangar AE is a hub for launch vehicle telemetry and other mission communications, primarily during prelaunch phases for launches at Cape Canaveral. Throughout the late 20th century, Hangar AE supported NASA launch vehicles in all shapes and sizes, from the Atlas-Centaur evolutions to the mighty Titan family. It even supported user data from the Space Shuttle program. Telemetry from these missions was processed at Hangar AE before being sent out to other NASA boffins, and even transmitted worldwide to other participating space agencies.

Coming down from decades of astronomical levels of funding, the 1980s was all about tightening the belt, and NASA needed budget solutions that didn’t skimp on mission safety. The Commodore Amiga turned out to be the right choice for processing launch vehicle telemetry. And so it was still, when cameras from the Amiga Atlanta group were granted permission to film inside Hangar AE.

Continue reading “Retrotechtacular: Amiga Pips The PC For Mission-Critical Computing At NASA”