Recreating The Analog Beauty Of A Vintage Tektronix Oscillator

Tektronix must have been quite a place to work back in the 1980s. The company offered a bewildering selection of test equipment, and while the digital age was creeping in, much of their gear was still firmly rooted in the analog world. And some of the engineering tricks the Tek wizards pulled off are still the stuff of legend.

One such gem of analog design was the SG505, an ultra-low-distortion oscillator module that [Paul] is trying to replicate with modern parts. That’s a tall order since not only did the original specs on this oscillator call for less than 0.0008% total harmonic distortion over a frequency range of 20 Hz to 20 kHz, but a lot of the components it used are no longer manufactured. Tek also tended to use a lot of custom parts, especially mechanical ones like the barrel switch used to select attenuation levels in the SG505, leaving [Paul] no choice but to engineer his way around them.

So far, [Paul] has managed to track down most of the critical components or source suitable substitutes. One major win was locating the original J-FET Tek used in the oscillator’s AGC circuit. One part that’s proven more elusive is the potentiometer that Tek used to adjust the frequency; who knew that finding a dual-gang precision wirewound 10k single-turn pot with no physical stop would be such a chore?

[Paul] still seems to be very much in the planning stages of this project yet, and that’s probably for the best since projects such as these live and die on proper planning. We’re keen to see how this develops, and we’re very much looking forward to seeing the FFT results. We also imagine he’ll be busting out his custom curve tracer at some point in the build, too.

VNAs And Crystals

Oscillators may use crystals as precise tuned circuits. If you have a vector network analyzer (VNA) — or even some basic test equipment — you can use it to learn the parameters of a crystal. [All Electronics Channel] has the details, and you can see how in the video below.

There was a time when a VNA was an exotic piece of gear, but these days they are relatively common. Crystal parameters are important because crystals have a series resonance and a parallel resonance and they are not at the same frequency. You also may need to know how much loading capacitance you have to supply to get the crystal at the right frequency.

Sometimes, you want to pull the crystal frequency, and the parameters will help you figure that out, too. It can also help if you have a crystal specified as series in a parallel-mode oscillator or vice versa.

If you don’t have a VNA, you can use a tracking signal generator, as [Grégory] shows towards the middle of the video. The quality of a tuned circuit depends on the Q factor, and crystals have a very high Q factor.

We did something similar in 2018. The other way to pull a crystal frequency is a bit extreme.

Continue reading “VNAs And Crystals”

Oscillator Needs Fine-Tuning

Since their invention more than a century ago, crystal oscillators have been foundational to electronic design. They allow for precise timekeeping for the clocks in computers as well as on our wrists, and can do it extremely accurately and inexpensively to boot. They aren’t without their downsides though; a quartz watch might lose or gain a few seconds a month due to variations in temperature and other non-ideal environmental situations, but for working in the world of high-frequency circuits this error is unacceptable. For that you might reach for something like an oven oscillator, a circuit with a temperature controlled chamber able to keep incredibly precise time.

[IMSAI Guy] found this 10 MHz oven oscillator on a site selling bulk electronics at bargain basement prices. But as is unsurprising for anyone who’s used a site like this to get cheap circuits, it didn’t quite hit its advertised frequency of 10.000000 MHz. The circuit design is capable of this amount of accuracy and precision, though, thanks to some cleverly-designed voltage dividers and filtering. One of those voltage dividers allows a potentiometer to control a very narrow range of output frequencies, and from the factory it was outputting between 9.999981 and 9.9999996 MHz. To get it to actually output a 10 MHz wave with eight significant digits of accuracy, a pull-up resistor on the voltage divider needed to be swapped out.

While this was a fairly simple fix, one might wonder how an off-the-shelf component like this would miss the mark in such an obvious way but still go into production. But that’s one of life’s great mysteries and also the fun of sourcing components like this. In this case, the oven oscillator was less than $10. But these circuits aren’t always as good of a deal as they seem.

Continue reading “Oscillator Needs Fine-Tuning”

Simplest Speaker Oscillator, Now Even Simpler

It never fails. Lay down some kind of superlative — fastest, cheapest, smallest — around this place and someone out there says, “Hold my beer” and gets to work. In this case, it’s another, even simpler audio oscillator, this time with just a loudspeaker and a battery.

Attentive readers will recall the previous title holder was indeed pretty simple, consisting only of the mic and speaker from an old landline telephone handset wired in series with a battery. Seeing this reminded [Hydrogen Time] of a lucky childhood accident while experimenting with a loudspeaker, which he recreates in the video below. The BOM for this one is even smaller than the previous one — just a small speaker and a battery, plus a small scrap of solid hookup wire. The wire is the key; rather than connecting directly to the speaker terminal, it connects to the speaker frame on one end while the other is carefully adjusted to just barely touch the flexible wire penetrating the speaker cone on its way to the voice coil.

When power is applied with the correct polarity, current flows through the wire into the voice coil, which moves the cone and breaks the circuit. The speaker’s diaphragm resets the cone, completing the circuit and repeating the whole process. The loudspeaker makes a little click with each cycle, leading to a very rough-sounding oscillator. [Hydrogen Time] doesn’t put a scope on it, but we suspect the waveform would be a ragged square wave whose frequency depends on the voltage, the spring constant of the diaphragm, and the spacing between the fixed wire and the voice coil lead.

Yes, we realize this is stretching the definition of an audio oscillator somewhat, but you’ve got to admit it’s simple. Can you get it even simpler?

Continue reading “Simplest Speaker Oscillator, Now Even Simpler”

No Active Components In This Mysterious Audio Oscillator

What’s the simplest audio frequency oscillator you can imagine? There’s the 555, of course, and we can think of a few designs using just two transistors or even a few with just one. But how about an oscillator with no active components? Now there’s a neat trick.

Replicating [Stelian]’s “simplest audio oscillator on the Internet” might take some doing on your part, since it relies on finding an old telephone. Like, really old — you’ll need one with the carbon granule cartridge in the handset, along with the speaker. Other than that, all you’ll need is a couple of 1.5-volt batteries, wiring everything in one big series loop, and placing the microphone and speaker right on top of each other. Apply power and you’re off to the races. [Stelian]’s specific setup yielded a 2.4-kHz tone that could be altered a bit by repositioning the speaker relative to the mic. On the oscilloscope, the waveform is a pretty heavily distorted sine wave.

It’s a bit of a mystery to [Stelian] as to how this works without something to provide at least a little gain. Perhaps the enclosure of the speaker or the mic has a paraboloid shape that amplifies the sound just enough to kick things off? Bah, who knows? Let the hand-waving begin!

Continue reading “No Active Components In This Mysterious Audio Oscillator”

Op-Amp Drag Race Turns Out Poorly For 741

When it was first introduced in 1968, Fairchild’s 741 op-amp made quite a splash. And with good reason; it packed a bunch of components into a compact package, and the applications for it were nearly limitless. The chip became hugely popular, to the point where “741” is almost synonymous with “op-amp” in the minds of many.

But should it be? Perhaps not, as [More Than Electronics] reveals with this head-to-head speed test that compares the 741 with its FET-input cousin, the TL081. The test setup is pretty simple, just a quick breadboard oscillator with component values selected to create a square wave at approximately 1-kHz, with oscilloscope probes on the output and across the 47-nF timing capacitor. The 741 was first up, and it was quickly apparent that the op-amp’s slew rate, or the rate of change of the output, wasn’t too great. Additionally, the peaks on the trace across the capacitor were noticeably blunted, indicating slow switching on the 741’s output stage. The TL081 fared quite a bit better in the same circuit, with slew rates of about 13 V/μS, or about 17 times better than the 741, and nice sharp transitions on the discharge trace.

As [How To Electronics] points out, comparing the 741 to the TL081 is almost apples to oranges. The 741 is a bipolar device, and comparing it to a device with JFET inputs is a little unfair. Still, it’s a good reminder that not all op-amps are created equal, and that just becuase two jelly bean parts are pin compatible doesn’t make them interchangeable. And extra caution is in order in a world where fake op-amps are thing, too.

Continue reading “Op-Amp Drag Race Turns Out Poorly For 741”

No Inductors Needed For This Simple, Clean Twin-Tee Oscillator

If there’s one thing that amateur radio operators are passionate about, it’s the search for the perfect sine wave. Oscillators without any harmonics are an important part of spectrum hygiene, and while building a perfect oscillator with no distortion is a practical impossibility, this twin-tee audio frequency oscillator gets pretty close.

As [Alan Wolke (W2AEW)] explains, a twin-tee oscillator is quite simple in concept, and pretty simple to build too. It uses a twin-tee filter, which is just a low-pass RC filter in parallel with a high-pass RC filter. No inductors are required, which helps with low-frequency designs like this, which would call for bulky coils. His component value selections form an impressively sharp 1.6-kHz notch filter about 40 dB deep. He then plugs the notch filter into the feedback loop of an MCP6002 op-amp, which creates a high-impedance path at anything other than the notch filter frequency. The resulting sine wave is a thing of beauty, showing very little distortion on an FFT plot. Even on the total harmonic distortion meter, the oscillator performs, with a THD of only 0.125%.

This video is part of [Alan]’s “Circuit Fun” series, which we’ve really been enjoying. The way he breaks complex topics into simple steps that are easy to understand and then strings them all together has been quite valuable. We’ve covered tons of his stuff, everything from the basics of diodes to time-domain reflectometry.

Continue reading “No Inductors Needed For This Simple, Clean Twin-Tee Oscillator”