Smart Ruler Has Many Features

For those of us who remember old ball mice, they were a lot like modern optical mice except that they needed to be cleaned constantly. Having optical mice as a standard way of interacting with a computer is a major improvement over previous eras in computing. With extinction of the ball mouse, there are an uncountable number of cheap optical mice around now which are easy pickings for modern hacking, and this latest project from [Vipul] shows off some of the ways that optical mice can be repurposed by building a digital ruler.

The build seems straightforward on the surface. As the ruler is passed over a surface the device keeps track of exactly how far it has moved, making it an effective and very accurate ruler. To built it, the optical component of a mouse was scavenged and mated directly to a Raspberry Pi Zero W over USB. Originally he intended to use an ESP32 but could not get the USB interface to work. [Vipul] was then able to write some software which can read the information from the mouse’s PCB directly and translate it into human-readable form where it is displayed on a small screen. The entire device is housed in a custom 3D-printed enclosure to wrap everything up, but the build doesn’t stop there though. [Vipul] also leveraged the Bluetooth functionality of the Pi and wrote a smartphone app which can be used to control the ruler as well.

While the device does have some limitations in that it has to make contact with the object being measured across its entire length, there are some situations where we can imagine something like this being extremely useful especially when measuring things that aren’t a straight line. [Vipul] has also made all of the code for this project publicly available for those of us who might have other uses in mind for something like this. We’ve seen optical mice repurposed for all kinds of things in the past, too, including measuring travel distances in autonomous vehicles.

Continue reading “Smart Ruler Has Many Features”

Unique Instrument Plucks Out Notes On A Ruler

How does one describe the notes that come from a ruler that is anchored on one end and then plucked? The best word we can come up with is “wubulation”. So would that make this ruler-plucking synthesizer a “wubulator”? Or perhaps a “wubatron”?

Whatever we decide to call it, [Dmitry Morozov] dubbed it the RBS-20, or “ruler bass synth, 20-cm”, for the 20-cm stainless steel ruler that forms the heart of the instrument. The ruler is attached to a linear slide which varies the length of the sprung section. A pair of servos can pluck the free section of the ruler in two different places, providing notes in different registers, while another pair of servos control metal fingers that can damp the vibration, change the sustain, and alter the notes. There’s no resonator; the sounds are instead picked up by a piezo mic. Twelve keys on the base of the instrument can be programmed for various lengths, and an OLED display gives the musician feedback. The video below shows the instrument wubulating, and brings us back to those desktop jam sessions in our grade school days — at least until the rulers were confiscated.

We’ve covered a ton of similarly unique musical instruments before, like this hybrid synthesizer-violin, a symphony of soda bottles, and inexplicably, a leg guitar.

Continue reading “Unique Instrument Plucks Out Notes On A Ruler”

Programmable Ruler Keeps 1970’s Computing Alive

A ruler seems like a pretty simple device; just a nice straight piece of material with some marks on it. There are some improvements out there to the basic design, like making it out of something flexible or printing a few useful crib notes and formulas on it so you have a handy reference. But for the most part, we can all agree that ruler technology has pretty much plateaued.

Well, not if [Brad] has anything to say about it. His latest creation, the Digirule2, is essentially an 8-bit computer like those of the 1970’s that just so happens to be a functional ruler as well. Forget lugging out the Altair 8800 next time you’re in the mood for some old school software development, now you can get the same experience with a piece of hardware that lives in your pencil cup.

Even if you’ve never commanded one of the blinkenlight behemoths that inspired the Digirule2, this is an excellent way to get some hands-on experience with early computer technology. Available for about the cost of a large pizza on Tindie, it represents one of the easiest and most cost-effective ways to tell your friends that as a matter of fact you have programmed a computer in binary.

The Digirule2 is powered by a Microchip PIC18F43K20, and is programmed by punching binary in one byte at a time with a bank of eight tactile switches. To make things a little easier, programs can be saved to the internal EEPROM and loaded back up just as easily thanks to the handy buttons next to the power switch. Now all you’ve got to do is figure out what all those blinking LEDs mean, and you’ll be in business.

The original Digirule was a logic gate simulator that we first covered back in 2015. We’re always happy to see projects grow and evolve over time, and think this new retro-computer themed variant is going to be quite popular with those who still love toggle switches and blinking lights.

Continue reading “Programmable Ruler Keeps 1970’s Computing Alive”

The People, Talks, And Swag Of Open Hardware Summit

Friday was the 2016 Open Hardware Summit, a yearly gathering of people who believe in the power of open design. The use of the term “summit” rather than “conference” is telling. This gathering brings together a critical mass of people running hardware companies that adhere to the ideal of “open”, but this isn’t at the exclusion of anyone — all are welcome to attend. Hackaday has built the world’s largest repository of Open Hardware projects. We didn’t just want to be there — We sponsored, sent a team of people, and thoroughly enjoyed ourselves in the process.

Join me after the break for a look at the talks, a walk through the swag bags, and a feel for what this wonderful day held.

Continue reading “The People, Talks, And Swag Of Open Hardware Summit”

Electronic Ruler Works Out Logic Truth Tables

Like [Brad], we’ve seen a number of PCB rulers out there. [Brad] was looking to take the idea and run with it. His DigiRule is a ruler with a logic gate simulator. What he built is a mash-up between PCB rulers, and the concept of electronic business cards.

All told it simulates seven logic gates, four flip-flops, and includes a four-bit counter. On one end of the ruler a CR1220 battery feeds the 18F43K20 which is performing the logic operations using buttons and LEDs. Of course the truth tables are printed on the back silk-screen, but playing with the lights is a lot more fun. We do find it fairly amusing that the centimeters on the bottom of the ruler are notated in binary.

It makes a lot more sense to hand out rulers than business cards; people might actually use them after you leave and you can still include contact info. This form-factor also breaks the mold. You can have a lot more space on a ruler and you’re not constrained by thickness (although [Limpkin] solved that problem). While we’re on the topic of business cards [ch00f’s] USB etch-a-sketch style card and this logic-based information delivery device top our favorites list.

Continue reading “Electronic Ruler Works Out Logic Truth Tables”

CNC’ed Business Card

Hobby CNC mills have made rapid prototyping easier and faster for hackers. One really useful application is quickly fabricating your own milled PCB’s. [proto logical] built a Reference PCB Business Card using his CNC mill after repeatedly coming across other hackers who were not too convinced about the capabilities of CNC mills in routing PCB’s (also referred to as isolation milling). He thought of making a business card sized reference PCB to show around when he bumps into such folks.

To keep it useful, he included inch and centimetre scales, 0.1″ grid of holes, reference track widths from 16 mil to 66 mil, a few common drill holes and vias and some SMD foot prints. The single sided board is 50 mil thick, so it doesn’t bulk up his wallet. He’s posted the Eagle board file (direct download) and G-code (text file) for those interested in milling their own reference boards. The idea isn’t new – it’s been tried several times in different form factors in the past, generally using more traditional techniques. [proto logical] got inspiration from [Rohit Gupta’s] TinkerRule – The Maker’s Swiss Army Knife. Then there’s the very popular uRuler made by [Dave Jones] of EEVBlog fame. If you have any suggestions on improving the design, chime in with comments here.

Thanks to [ACG] for sending in this tip that he dug up while looking for CNC routed PCB’s.

Geometry Class Just Got Augmented

ruler

Just about every engineer needs to take a drawing class, but until now we surprisingly haven’t seen electronics thrown into rulers, t-squares, and lead holders. [Anirudh] decided to change that with Glassified. It’s a transparent display embedded in a ruler that is able to capture hand drawn lines. These physical lines can be interacted with or measured, turning a ruler into a bridge between a paper drawing and a digital environment.

For the display, [Anirudh] mounted a transparent TOLED display with a digitizer input into a ruler. The digitizer captures the pen strokes underneath the ruler, and is able to interact with the physical lines, either to calculate the length and angle of lines, or just to bounce a digital ball inside a hand-drawn polygon.

There’s no word on how this display is being driven, or what kind of code is running on it. [Anirudh] said he will have some schematics and code available up on his website soon (it’s a 404 right now).