8-Bit Computers Crunch Advanced Scientific Computations

Although largely relegated to retrocomputing enthusiasts and embedded systems or microcontrollers now, there was a time when there were no other computers available other than those with 8-bit processors. The late 70s and early 80s would have seen computers with processors like the Motorola 6800 or Intel 8080 as the top-of-the-line equipment and, while underpowered by modern standards, these machines can do quite a bit of useful work even today. Mathematician [Jean Michel Sellier] wanted to demonstrate this so he set up a Commodore 64 to study some concepts like simulating a quantum computer.

The computer programs he’s written to do this work are in BASIC, a common high-level language of the era designed for ease of use. To simulate the quantum computer he sets up a matrix-vector multiplication but simplifies it using conditional logic. Everything is shown using theĀ LIST command so those with access to older hardware like this can follow along. From there this quantum computer even goes as far as demonstrating a quantum full adder.

There are a number of other videos on other topics available as well. For example, there’s an AmigaBasic program that simulates quantum wave packets and a QBasic program that helps visualize the statistical likelihood of finding an electron at various locations around a hydrogen nucleus. While not likely to displace any supercomputing platforms anytime soon, it’s a good look at how you don’t need a lot of computing power in all situations. And, if you need a refresher on some of these concepts, there’s an overview on how modern quantum computers work here.

This Week In Security: Playing Tag, Hacking Cameras, And More

Wired has a fascinating story this week, about the length Sophos has gone to for the last 5 years, to track down a group of malicious but clever security researchers that were continually discovering vulnerabilities and then using those findings to attack real-world targets. Sophos believes this adversary to be overlapping Chinese groups known as APT31, APT41, and Volt Typhoon.

The story is actually refreshing in its honesty, with Sophos freely admitting that their products, and security products from multiple other vendors have been caught in the crosshairs of these attacks. And indeed, we’ve covered stories about these vulnerabilities over the past weeks and months right here on this column. The sneaky truth is that many of these security products actually have pretty severe security problems.

The issues at Sophos started with an infection of an informational computer at a subsidiary office. They believe this was an information gathering exercise, that was a precursor to the widespread campaign. That campaign used multiple 0-days to crack “tens of thousands of firewalls around the world”. Sophos rolled out fixes for those 0-days, and included just a bit of extra logging as an undocumented feature. That logging paid off, as Sophos’ team of researchers soon identified an early signal among the telemetry. This wasn’t merely the first device to be attacked, but was actually a test device used to develop the attack. The game was on. Continue reading “This Week In Security: Playing Tag, Hacking Cameras, And More”

This Week In Security: The Geopolitical Kernel, Roundcube, And The Archive

Leading off the week is the controversy around the Linux kernel and an unexpected change in maintainership. The exact change was that over a dozen developers with ties to or employment by Russian entities were removed as maintainers. The unfortunate thing about this patch was that it was merged without any discussion or real explanation, other than being “due to various compliance requirements”. We eventually got more answers, that this was due to US sanctions against certain Russian businesses, and that the Linux Foundation lawyers gave guidance that:

If your company is on the U.S. OFAC SDN lists, subject to an OFAC sanctions program, or owned/controlled by a company on the list, our ability to collaborate with you will be subject to restrictions, and you cannot be in the MAINTAINERS file.

So that’s that. One might observe that it’s unfortunate that a single government has that much control over the kernel’s development process. There were some questions about why Russian entities were targeted and not sanctioned Chinese companies like Huawei. [Ted Ts’o] spoke to that, explaining that in the US there are exemptions and different rules for each country and business. This was all fairly standard compliance stuff, up until a very surprising statement from [James Bottomley], a very core Kernel maintainer:

We are hoping that this action alone will be sufficient to satisfy the US Treasury department in charge of sanctions and we won’t also have to remove any existing patches.

Continue reading “This Week In Security: The Geopolitical Kernel, Roundcube, And The Archive”

This Week In Security: Quantum RSA Break, Out Of Scope, And Spoofing Packets

Depending on who you ask, the big news this week is that quantum computing researchers out of China have broken RSA. (Here’s the PDF of their paper.) And that’s true… sort of. There are multiple caveats, like the fact that this proof of concept is only factoring a 22-bit key. The minimum RSA size in use these days is 1024 bits. The other important note is that this wasn’t done on a general purpose quantum computer, but on a D-Wave quantum annealing machine.

First off, what is the difference between a general purpose and annealing quantum computer? Practically speaking, a quantum annealer can’t run Shor’s algorithm, the quantum algorithm that can factor large numbers into primes in a much shorter time than classical computers. While it’s pretty certain that this algorithm works from a mathematical perspective, it’s not at all clear that it will ever be possible to build effective quantum computers that can actually run it for the large numbers that are used in cryptography.

We’re going to vastly oversimplify the problem, and say that the challenge with general purpose quantum computing is that each q-bit is error prone, and the more q-bits a system has, the more errors it has. This error rate has proved to be a hard problem. The D-wave quantum annealing machine side-steps the issue by building a different sort of q-bits, that interact differently than in a general purpose quantum computer. The errors become much less of a problem, but you get a much less powerful primitive. And this is why annealing machines can’t run Shor’s algorithm.

The news this week is that researchers actually demonstrated a different technique on a D-wave machine that did actually factor an RSA key. From a research and engineering perspective, it is excellent work. But it doesn’t necessarily demonstrate the exponential speedup that would be required to break real-world RSA keys. To put it into perspective, you can literally crack a 22 bit RSA key by hand.

Continue reading “This Week In Security: Quantum RSA Break, Out Of Scope, And Spoofing Packets”

Quantum Sensor Uses Synthetic Diamond

Diamonds are nearly perfect crystals, but not totally perfect. The defects in these crystals give the stones their characteristic colors. But one type of defect, the NV — nitrogen-vacancy — center, can hold a particular spin, and you can change that spin with the correct application of energy. [Asianometry] explains why this is important in the video below.

Interestingly, even at room temperature, an NV center stays stable for a long time. Even more importantly, you can measure the spin nondestructively by detecting light emissions from the center.

Continue reading “Quantum Sensor Uses Synthetic Diamond”

Neopixels? Try Liquid Nitrogen To Color Shift Your LEDs Instead

If you’re like us, you’ve never spent a second thinking about what happens when you dunk an ordinary LED into liquid nitrogen. That’s too bad because as it turns out, the results are pretty interesting and actually give us a little bit of a look at the quantum world.

The LED fun that [Sebastian] over at Baltic Lab demonstrates in the video below starts with a bright yellow LED and a beaker full of liquid nitrogen. Lowering the powered LED into the nitrogen changes the color of the light from yellow to green, an effect that reverses as the LED is withdrawn and starts to warm up again. There’s no apparent damage to the LED either, although we suppose that repeated thermal cycles might be detrimental at some point. The color change is quite rapid, and seems to also result in a general increase in the LED’s intensity, although that could be an optical illusion; our eyes are most sensitive in the greenish wavelengths, after all.

So why does this happen? [Sebastian] goes into some detail about that, and this is where quantum physics comes into it. The color of an LED is a property of the bandgap of the semiconductor material. Bandgap is just the difference in energy between electrons in the valence band (the energy levels electrons end up at when excited) and the conduction band (the energy levels they start at.) There’s no bandgap in conductive materials — the two bands overlap — while insulators have a huge bandgap and semiconductors have a narrow gap. Bandgap is also dependent on temperature; it increases with decreasing temperature, with different amounts for different semiconductors, but not observably so over normal temperature ranges. But liquid nitrogen is cold enough for the shift to be dramatically visible.

We’d love to see the color shift associated with other cryogens, or see what happens with a blue LED. Want to try this but don’t have any liquid nitrogen? Make some yourself!

Continue reading “Neopixels? Try Liquid Nitrogen To Color Shift Your LEDs Instead”

Royal Navy Tests Quantum Navigation

GPS has changed the way we get around the globe. But if you command a warship, you must think about what you would do if an adversary destroyed or compromised your GPS system. The Royal Navy and Imperial College London think a quantum navigation system might be the answer.
Of course, Heisenberg says you can’t know your speed and position simultaneously. But at the real-world level, you can apparently get close enough. The quantum sensors in question are essentially accelerometers. Unlike conventional accelerometers, though, these devices use ultracold atoms to make very precise measurements using a laser optical ruler, which means they do not drift as rapidly as, say, the accelerometer in your phone. Navigating with accelerometers is well understood, but the issue is how often you have to correct your computed position with an actual reference due to drift and other error accumulation. You can see a Sky News report on the trial below. Continue reading “Royal Navy Tests Quantum Navigation”