Reverse Engineering Traffic Lights With Software Defined Radio

Construction crews tearing up the street to lay new internet fiber optic cable created a unique opportunity for [Bastian Bloessl]. The workers brought two mobile traffic lights to help keep the road safe while they worked. [Bastian] had heard that these lights use the 2 meter band radios, so he grabbed his RTL-SDR USB stick and started hacking. Mobile traffic lights are becoming more common in Europe. They can be controlled by a clock, traffic volume via an on-board camera, wire or radio. They also transmit status data, which is what [Bastian] was hoping to receive.

A quick scan with GQRX revealed a strong signal on 170.760 MHz. Using baudline and audacity, [Bastian] was able to determine that Audio Frequency Shift Keying was used to modulate the data. He created a simple receiver chain in GNU radio, and was greeted with a solid data stream from the lights. By watching the lights and looking at the data frames, [Bastian] was able to determine which bits contained the current light status. A quickly knocked up web interface allowed him to display the traffic light status in real-time.

It’s a bit scary that the data was sent in plaintext, however this is just status data. We hope that any command data is sent encrypted through a more secure channel.

Continue reading “Reverse Engineering Traffic Lights With Software Defined Radio”

Reverse Engineering An Obsolete Security System

[Veghead] recently went to a surplus warehouse filled with VHS editing studios, IBM keyboards, electronic paraphernalia from 40 years ago, and a lot of useless crap. His haul included a wooden keypad from an old alarm system that exuded 1980s futurism, and he figured it would be cool to hook this up to an alarm system from 2015. How did he do that? With software defined radio.

After pulling apart the alarm panel, [Veghead] found only a single-sided board with a 9V battery connector. There were no screw terminals for an alarm loop, meaning this entire system was wireless – an impressive achievement for the mid-80s hardware. A quick search of the FCC website showed this alarm panel was registered to two bands, 319MHz and 340MHz, well within the range of an RTL-SDR USB TV tuner dongle.

After capturing some of the raw data and playing it back in Audacity, [Veghead] found a simple OOK protocol that sends two identical binary patterns for each key. A simple program takes the raw bit patterns for each key press and codes them into a map for each of the twelve buttons.

Although the radio still works, [Veghead] found the waveforms captured by his RTL-SDR were an abomination to RF. All the components in this security system are more than 30 years old at this point, and surely some of the components must be out of spec by now. Still, [Veghead] was able to get the thing working again, a testament to the usefulness of a $20 USB TV tuner.

Thanks [Jose] for sending this one in

Strange Signals? Sigidwiki!

If you’ve gotten into software-defined radio (SDR) in the last five years, you’re not alone. A lot of hackers out there are listening in to the previously unheard. But what do you do when you find an interesting signal and you don’t know what it is? Head on over to the Signal Identification Wiki! You’ll find recordings and waterfall plots for a ton of radio signals categorized by frequency band as well as their use.

Or, conversely, maybe you’ve just got a new radio and you want to test it out. What would be a fun challenge to receive? Signals in the catalog range from the mundane, like this smart home energy meter from California, or a Chrysler tire-pressure monitoring system to (probably) secret military or intelligence transmissions.

If you’re looking at a waterfall plot and you’re not sure what to make of it, the sigidwiki is worth a look. And it’s a wiki, so if you’ve got a cool signal and you want to add it, create an account and get to it!

Thanks to [mkie] for the tip!

Crystal Radio: It’s A Match!

A crystal radio is often a kid’s first introduction to building something electronic. [Billy Cheung] is a crystal radio builder who wants to “make crystal radios as easy to use as regular radios.” He’s built many sets, but his latest is one that not only fits in a matchbox, but uses the matchbox as a variable tuning inductor.

There’s no oatmeal box in this design and just a few components. The matchbox contains some ferrite rods and two different windings. By moving the inner part of the matchbox, you can tune different stations. Although the design calls for two fixed capacitors [Billy] found he had enough self resonance (presumably from stray capacitance) that omitting them didn’t hurt his reception of strong signals.

Continue reading “Crystal Radio: It’s A Match!”

RTLSDR

Decoding Satellite-based Text Messages With RTL-SDR And Hacked GPS Antenna

[Carl] just found a yet another use for the RTL-SDR. He’s been decoding Inmarsat STD-C EGC messages with it. Inmarsat is a British satellite telecommunications company. They provide communications all over the world to places that do not have a reliable terrestrial communications network. STD-C is a text message communications channel used mostly by maritime operators. This channel contains Enhanced Group Call (EGC) messages which include information such as search and rescue, coast guard, weather, and more.

Not much equipment is required for this, just the RTL-SDR dongle, an antenna, a computer, and the cables to hook them all up together. Once all of the gear was collected, [Carl] used an Android app called Satellite AR to locate his nearest Inmarsat satellite. Since these satellites are geostationary, he won’t have to move his antenna once it’s pointed in the right direction.

Hacked GPS antenna
Hacked GPS antenna

As far as antennas go, [Carl] recommends a dish or helix antenna. If you don’t want to fork over the money for something that fancy, he also explains how you can modify a $10 GPS antenna to work for this purpose. He admits that it’s not the best antenna for this, but it will get the job done. A typical GPS antenna will be tuned for 1575 MHz and will contain a band pass filter that prevents the antenna from picking up signals 1-2MHz away from that frequency.

To remove the filter, the plastic case must first be removed. Then a metal reflector needs to be removed from the bottom of the antenna using a soldering iron. The actual antenna circuit is hiding under the reflector. The filter is typically the largest component on the board. After desoldering, the IN and OUT pads are bridged together. The whole thing can then be put back together for use with this project.

Once everything was hooked up and the antenna was pointed in the right place, the audio output from the dongle was piped into the SDR# tuner software. After tuning to the correct frequency and setting all of the audio parameters, the audio was then decoded with another program called tdma-demo.exe. If everything is tuned just right, the software will be able to decode the audio signal and it will start to display messages. [Carl] posted some interesting examples including a couple of pirate warnings.

If you can’t get enough RTL-SDR hacks, be sure to check out some of the others we’ve featured in the past. And don’t forget to send in links to your own hacking!

DEF CON: The Proxy For ProxyHam

Two weeks ago, news broke of an incredible abuse of power from the National Security Agency. A DEF CON talk was cancelled, and speculation raged that information was not free. This was the ProxyHam, a device that puts you miles away from any agency hunting down your IP address.

Of course, as with just about every DEF CON talk picked up by the press, ProxyHam is an ill-conceived, terrible idea. You can replicate it with parts bought from newegg, and despite using a highly directional antenna the FCC – or any other government agency – can still track you down.

In lieu of a talk on using off-the-shelf networking hardware in the way it was intended, [Dave Maynor] and [Robert Graham] of Errata Security gave a talk at DEF CON that is the proxy to the ProxyHam. They completely debunked the outrageous speculation surrounding the cancellation of the DEF CON talk and managed to introduce a new version of Internet over radio that is actually useful for the security-minded individual.

The ‘debunking’ part of the Errata Security talk was exactly what anyone would expect; the talk was probably cancelled because the creator of ProxyHam exceeded radiated power limits, the FCC caught him, or simply because of ‘advice from counsel’. No big deal; someone was doing something illegal – encryption over ISM bands – and the things you would expect to happen in fact happened.

In the last two weeks, the guys replicated the ProxyHam build, but found a few major shortcomings. Even with a highly directional antenna, interested parties could still track you down. This led the guys at Errata Security to make this system better. They managed to do it in two weeks.

The Errata Security relies on JT65A – a radio mode made for very weak signals – to hide signals underneath the noise floor. By multiplexing data across multiple channels, this system has about the same bandwidth as a 56kbps modem from 1999. It’s not much, but it is possible to use this proxy for ProxyHam over 20 miles away from where you’re stealing WiFi from. That’s far better than ProxyHam could ever manage, and all the transmissions stay below the noise floor. The FCC and similarly equipped agencies might be able to find you, but no one with a $20 SDR dongle will.

There are no releases yet, but Errata Security plan to make the software that allows this multiplex transmissions available soon, and hope to have a Raspberry Pi-based hardware solution for this technique coming shortly. It’s a radio proxy solution that’s actually somewhat secure, and won’t immediately draw the ire of the FCC.

Saving An Alarm System Remote And $100

[Simon] has been using his home alarm system for over six years now. The system originally came with a small RF remote control, but after years of use and abuse it was finally falling apart. After searching for replacement parts online, he found that his alarm system is the “old” model and remotes are no longer available for purchase. The new system had similar RF remotes, but supposedly they were not compatible. He decided to dig in and fix his remote himself.

He cracked open the remote’s case and found an 8-pin chip labeled HCS300. This chip handles all of the remote’s functions, including reading the buttons, flashing the LED, and providing encoded output to the 433MHz transmitter. The HCS300 also uses KeeLoq technology to protect the data transmission with a rolling code. [Simon] did some research online and found the thew new alarm system’s remotes also use the same KeeLoq technology. On a hunch, he went ahead and ordered two of the newer model remotes.

He tried pairing them up with his receiver but of course it couldn’t be that simple. After opening up the new remote he found that it also used the HCS300 chip. That was a good sign. The manufacturer states that each remote is programmed with a secret 64-bit manufacturer’s code. This acts as the encryption key, so [Simon] would have to somehow crack the key on his original chip and re-program the new chip with the old key. Or he could take the simpler path and swap chips.

A hot air gun made short work of the de-soldering and soon enough the chips were in place. Unfortunately, the chips have different pinouts, so [Simon] had to cut a few traces and fix them with jumper wire. With the case back together and the buttons in place, he gave it a test. It worked. Who needs to upgrade their entire alarm system when you can just hack the remote?