Satellite Internet On 80s Hardware

Portability has been a goal of a sizable section of the computing world for many decades now. While the obvious products of this are laptops, there are a number of “luggable” PCs that pack more power while ostensibly maintaining their portability. Going back in time past things like the LAN party era of the 90s and 00s takes us to the early era of luggables, with the Commodore SX-64 being one such machine of this era. Its portability is on display in this video where [saveitforparts] is using it to access the Internet over satellite.

The project uses a Glocom Inmarsat modem and antenna to access the internet through a geostationary satellite, but since this computer is about four decades old now this takes a little bit more effort than a modern computer. A Teensy microcontroller is used to emulate a modem so that the Ethernet connection from the satellite modem can be understood by the Commodore. There was a significant amount of setup and troubleshooting required as well, especially regarding IP addresses and networking but eventually [saveitforparts] got the system up and running well enough to chat on a BBS and browse Wikipedia.

One thing he found that might make a system like this relevant for a modern user is that the text-only mode of the Commodore significantly limited data use. For a normal Internet connection this might be a problem, but on a geostationary satellite network where the data is orders of magnitude more expensive, this can be surprisingly helpful. We might not recommend an SX-64 system specifically, but one inspired by similar computers like this text-only cyberdeck might do the trick with the right networking connections.

Continue reading “Satellite Internet On 80s Hardware”

Communicating With Satellites Like It’s 1957

When the first artificial satellite, Sputnik, was put into orbit around Earth, anyone in the path of the satellite could receive the beeps transmitted by the satellite provided they had some simple radio equipment. Of course, there was no two-way communication with this satellite, and it only lasted a few weeks before its batteries died. Here in the future, though, there are many more satellites in orbit and a few are specifically meant for ham radio operators. And, like the ’50s, it doesn’t take too much specialized equipment to communicate with them, although now that communication can be two-way.

The first step in this guide by [W2PAK] is to know where these satellites are in the sky. The simplest way to do that is to use a smartphone app called GoSatWatch and, when configured for a specific location, shows the satellites currently overhead. After that it’s time to break out the radio gear, which can be surprisingly inexpensive. A dual-band handheld is required since satellite uplink and downlink can be on different bands, and the antenna can be made from simple parts as well as [W2PAK] demonstrates in a separate video. Combined, this can easily be done for less than $100. [W2PAK] also goes over the proper format and etiquette for a satellite contact as well, so a new operator can pick it up quickly.

Using satellites as repeaters opens up a lot of capabilities when compared to terrestrial communications. Especially for operators with entry-level licenses who are restricted to mostly VHF and UHF, it adds a challenge as well as significantly increased range compared to ground-based repeaters and line-of-sight communications. There are plenty of activities around satellites that don’t require a license at all, too, like this project which downloads weather imagery from weather satellites.

Continue reading “Communicating With Satellites Like It’s 1957”

Making The Longest-Distance Radio Contact Possible

One of the more popular activities in the ham radio world is DXing, which is attempting to communicate with radio stations as far away as possible. There are some feats that will earn some major credibility in this arena, like two-way communication with Antarctica with only a few watts of power, long-path communication around the globe, or even bouncing a signal off the moon and back to a faraway point on Earth. But these modes all have one thing in common: they’re communicating with someone who’s also presumably on the same planet. Barring extraterrestrial contact, if you want to step up your DX game you’ll want to try to contact some of our deep-space probes (PDF).

[David Prutchi] aka [N2QG] has been doing this for a number of years now and has a wealth of knowledge and experience to share. He’s using both a 3.2 meter dish and a 1.2 meter dish for probing deep space, as well as some custom feed horns and other antennas to mount to them. Generally these signals are incredibly small since they travel a long way through deep space, so some amplification of the received signals is also needed. Not only that, but since planets and satellites are all moving with respect to each other, some sort of tracking system is needed to actively point the dish in the correct direction.

With all of that taken care of, it’s time to see what sort of signals are coming in. Compared to NASA’s 70-meter antennas used to communicate with deep space, some signals received on smaller dishes like these will only see the carrier wave. This was the case when an amateur radio group used an old radio telescope to detect one of the Voyager signals recently. But there are a few cases where [David] was able to actually receive data and demodulate it, so it’s not always carrier-only. If you’re sitting on an old satellite TV dish like these, we’d certainly recommend pointing it to the sky to see what’s out there. If not, you can always 3D print one.

Bouncing Signals Off Of Satellites Other Than The Moon

The moon is a popular target for ham radio operators to bounce signals since it’s fairly large and follows a predictable path. There are some downsides, though; it’s not always visible from the same point on Earth and is a relatively long way away. Thinking they could trade some distance for size, an amateur radio group from the Netherlands was recently able to use a radio telescope pointed at a geostationary satellite to reflect a signal back down to Earth, using this man-made satellite to complete the path instead of the more common natural one.

While there are plenty of satellites in orbit meant for amateur radio communication (including the International Space Station, although it occasionally does other things too), these all have built-in radio transmitters or repeaters specifically meant for re-transmitting received signals. They’re also generally not in geostationary orbit. So, with a retired radio telescope with a 20-meter dish aimed directly at one of the ones already there, they sent out a signal which bounced off of the physical body of the satellite and then back down where it was received by a station in Switzerland. Of course, the path loss here is fairly extreme as well since the satellite is small compared to the moon and geostationary orbit is a significant distance away, so they used the Q65 mode in WSJT-X which is specifically designed for recovering weak signals.

Don’t break out the tape measure Yagi antenna to try this yourself just yet, though. This path is not quite as reliable as Earth-Moon-Earth for a few reasons the group is not quite sure about yet. Not every satellite they aimed their dish at worked, although they theorize that this might be because of different shapes and sizes of the satellites or that the solar panels were not pointing the correct direction. But they were able to make a few contacts using this method nonetheless, a remarkable achievement they can add to their list which includes receiving a signal from one of the Voyager spacecraft.

Hackaday Links Column Banner

Hackaday Links: January 19, 2025

This week, we witnessed a couple of space oopsies as both Starship and New Glenn suffered in-flight mishaps on the same day. SpaceX’s Starship was the more spectacular, with the upper stage of the seventh test flight of the full stack experiencing a “rapid unscheduled disassembly” thanks to a fire developing in the aft section of the stage somewhere over the Turks and Caicos islands, about eight and a half minutes after takeoff from Boca Chica. The good news is that the RUD happened after first-stage separation, and that the Super Heavy booster was not only able to safely return to the pad but also made another successful “chopsticks” landing on the tower. Sorry, that’s just never going to get old.

On the Bezos side of the billionaire rocket club, the maiden flight of Blue Origin’s New Glenn ended with the opposite problem. The upper stage reached orbit, but the reusable booster didn’t make it back to the landing barge parked off the Bahamas. What exactly happened isn’t clear yet, but judging by the telemetry the booster was coming in mighty fast, which may indicate that the engines didn’t restart fully and the thing just broke up when it got into the denser part of the atmosphere.

Continue reading “Hackaday Links: January 19, 2025”

38C3: Save Your Satellite With These Three Simple Tricks

BEESAT-1 is a 1U cubesat launched in 2009 by the Technical University of Berlin. Like all good satellites, it has redundant computers onboard, so when the first one failed in 2011, it just switched over to the second. And when the backup failed in 2013, well, the satellite was “dead” — or rather sending back all zeroes. Until [PistonMiner] took a look at it, that is.

Getting the job done required debugging the firmware remotely — like 700 km remotely. Because it was sending back all zeroes, but sending back valid zeroes, that meant there was something wrong either in the data collection or the assembly of the telemetry frames. A quick experiment confirmed that the assembly routine fired off very infrequently, which was a parameter that’s modifiable in SRAM. Setting a shorter assembly time lead to success: valid telemetry frame.

Then comes the job of patching the bird in flight. [PistonMiner] pulled the flash down, and cobbled together a model of the satellite to practice with in the lab. And that’s when they discovered that the satellite doesn’t support software upload to flash, but does allow writing parameter words. The hack was an abuse of the fact that the original code was written in C++. Intercepting the vtables let them run their own commands without the flash read and write conflicting.

Of course, nothing is that easy. Bugs upon bugs, combined with the short communication window, made it even more challenging. And then there was the bizarre bit with the camera firing off after every flash dump because of a missing break in a case statement. But the camera never worked anyway, because the firmware didn’t get finished before launch.

Challenge accepted: [PistonMiner] got it working, and after fifteen years in space, and ten years of being “dead”, BEESAT-1 was taking photos again. What caused the initial problem? NAND flash memory needs to be cleared to zeroes before it’s written, and a bug in the code lead to a long pause between the two, during which a watchdog timeout fired and the satellite reset, blanking the flash.

This talk is absolutely fantastic, but may be of limited practical use unless you have a long-dormant satellite to play around with. We can nearly guarantee that after watching this talk, you will wish that you did. If so, the Orbital Index can help you get started.

Handheld Satellite Dish Is 3D Printed

Ham radio enthusiasts, people looking to borrow their neighbors’ WiFi, and those interested in decoding signals from things like weather satellites will often grab an old satellite TV antenna and repurpose it. Customers have been leaving these services for years, so they’re pretty widely available. But for handheld operation, these metal dishes can get quite cumbersome. A 3D-printed satellite dish like this one is lightweight and small enough to be held, enabling some interesting satellite tracking activities with just a few other parts needed.

Although we see his projects often, [saveitforparts] did not design this antenna, instead downloading the design from [t0nito] on Thingiverse. [saveitforparts] does know his way around a satellite antenna, though, so he is exactly the kind of person who would put something like this through its paces and use it for his own needs. There were a few hiccups with the print, but with all the 3D printed parts completed, the metal mesh added to the dish, and a correctly polarized helical antenna formed into the print to receive the signals, it was ready to point at the sky.

The results for the day of testing were incredibly promising. Compared to a second satellite antenna with an automatic tracker, the handheld 3D-printed version captured nearly all of the information sent from the satellite in orbit. [saveitforparts] plans to build a tracker for this small dish to improve it even further. He’s been able to find some satellite trackers from junked hardware in some unusual places as well. Antennas seem to be a ripe area for 3D printing.

Continue reading “Handheld Satellite Dish Is 3D Printed”