Classic LED Bubble Displays Ride Again

Hewlett-Packard used to make some pretty cool LED displays, many of which appeared in their iconic pocket calculators back in the 1970s and 1980s. [Upir] tracked down some of these classic bubble displays and used them with a microcontroller. We love the results!

The displays featured here, the HPDL-1414, aren’t quite what would have been found in an HP-35, of course. These displays have 16 segments for reasonably legible approximations of most of the ASCII character set. Also, these aren’t just the displays; rather, a pair of the bubble-topped displays, each with four characters, is mounted to a module that provides a serial interface. [Upir] found these modules online, but despite the HP logo on the PCB silkscreen, it’s not really clear who made them. The documentation was a bit thin, to say the least, but with a little translation help from Google, he figured out the serial parameters and the character encoding. The video below shows him putting these modules through their paces.

Unusually for [upir], who has made a name for himself hacking displays to do things they weren’t designed to do, he stuck with the stock character set baked into this module. We think it would be fun to get one of these modules and hack the firmware to provide alternative character sets or even get a few of the naked displays and build a custom interface. Sounds like a fun rainy-day project.

This reminded us of another HP display project we saw a while back. Or, roll your own displays.

Continue reading “Classic LED Bubble Displays Ride Again”

Dot-Matrix Printer Brings Old School Feel To Today’s Headlines

If you remember a time when TV news sets universally incorporated a room full of clattering wire service teleprinters to emphasize the seriousness of the news business, congratulations — you’re old. Now, most of us get our news piped directly into our phones, selected by algorithms perfectly tuned to rile us up on whatever the hot-button issue du jour happens to be. Welcome to the future.

If like us you long for a simpler way to get your news, [Andrew Schmelyun] has a partial solution with this dot-matrix news feeder. It’s part of his effort to detox a bit from the whole algorithm thing and make the news a little more concrete. He managed to chase down a very old Star Micronics printer with a serial interface, which he got on the cheap thanks to the previous owner not being sure if it worked. It did, at least after some cleaning, and thanks to a USB-to-serial and the efforts of Linux kernel hackers through the ages, was able to echo output to the printer from a Raspberry Pi Zero W.

From there, getting a daily news feed was as simple as writing some PHP code to mine the APIs of a few selected services. We’re perplexed and alarmed to report that Hackaday is not among the selected sources, but we’re sure this was just a small oversight that will be corrected in version 2. The program runs as a cron job so that a dead-tree version of the day’s top stories is ready for [Andrew]’s morning coffee.

We’ve seen similar news printers before; we particularly like this roll-feed paper version. But for a seriously retro feel, we’d love to see this done on a real teletype.

A Journey Into Unexpected Serial Ports

Through all the generations of computing devices from the era of the teleprinter to the present day, there’s one interface that’s remained universal. Even though its usefulness as an everyday port has decreased in the face of much faster competition, it’s fair to say that everything has a serial port on board somewhere. Even with that ubiquity though, there’s still some scope for variation.

Older ports and those that are still exposed via a D socket are in most case the so-called RS-232, a higher voltage port, while your microcontroller debug port will be so-called TTL (transistor-transistor logic), operating at logic level. That’s not quite always the case though, as [Terin Stock] found out with an older Garmin GPS unit.

Pleasingly for a three decade old device, given a fresh set of batteries it worked. The time was wrong, but after some fiddling and a Windows 98 machine spun up it applied a Garmin update from 1999 that fixed it. When hooked up to a Flipper Zero though, and after a mild panic about voltage levels, the serial port appeared to deliver garbage. There followed some investigation, with an interesting conclusion that TTL serial is usually the inverse of RS-232 serial, The Garmin had the RS-232 polarity with TTL levels, allowing it to work with many PC serial ports. A quick application of an inverter fixed the problem, and now Garmin and Flipper talk happily.

Close-Up On The RP2350 HSTX Peripheral

The new Raspberry Pi Pico 2 with its RP2350 microcontroller has only been with us for a short time, and thus its capabilities are still being tested. One of the new peripherals is HSTX, for which the description “High speed serial port” does not adequately describe how far it is from the humble UART which the name might suggest. CNX Software have taken a look at its capabilities, and it’s worth a read.

With a 150 MHz clock and 8 available pins, it’s a serial output with a combined bandwidth of 2400 Mbps, which immediately leaves all manner of potential for streamed outputs. On the RP2040 for example a DVI output was made using the PIO peripherals, while here the example code shows how to use these pins instead. We’re guessing it will be exploited for all manner of pseudo-analogue awesomeness in the manner we’re used to with the I2S peripherals on the EP32. Of course, there’s no corresponding input, but that still leaves plenty of potential.

Have a quick read of our launch coverage of the RP2350, and the Pico 2 board it’s part of.

Ryobi Battery Pack Gives Up Its Secrets Before Giving Up The Ghost

Remember when dead batteries were something you’d just toss in the trash? Those days are long gone, thankfully, and rechargeable battery packs have put powerful cordless tools in the palms of our hands. But when those battery packs go bad, replacing them becomes an expensive proposition. And that’s a great excuse to pop a pack open and see what’s happening inside.

The battery pack in question found its way to [Don]’s bench by blinking some error codes and refusing to charge. Popping it open, he found a surprisingly packed PCB on top of the lithium cells, presumably the battery management system judging by the part numbers on some of the chips. There are a lot of test points along with some tempting headers, including one that gave up some serial data when the battery’s test button was pressed. The data isn’t encrypted, but it is somewhat cryptic, and didn’t give [Don] much help. Moving on to the test points, [Don] was able to measure the voltage of each battery in the series string. He also identified test pads that disable individual cells, at least judging by the serial output, which could be diagnostically interesting.  [Don]’s reverse engineering work is now focused on the charge controller chip, which he’s looking at through its I2C port. He seems to have done quite a bit of work capturing output and trying to square it with the chip’s datasheet, but he’s having trouble decoding it.

This would be a great place for the Hackaday community to pitch in so he can perhaps get this battery unbricked. We have to admit feeling a wee bit responsible for this, since [Don] reports that it was our article on reverse engineering a cheap security camera that inspired him to dig into this, so we’d love to get him some help.

Old Dot-Matrix Displays Give Up Their Serial Secrets

If there’s one thing we like better around here than old, obscure displays, it’s old, obscure displays with no documentation that need a healthy dose of reverse engineering before they can be put to use. These Plessey dot-matrix displays are a perfect example of that.

We’re not sure where [Michael] scored these displays, but they look fantastic. Each 8-pin DIP has two 5×7-matrix, high-visibility LED displays. They bear date codes from the late 80s under the part number, GPD340, but sadly, precious little data about them could be dredged up from the Interwebz. With 70 pixels and only six pins after accounting for power and ground, [Michael] figured there would be a serial protocol involved, but which pins?

He decided to brute-force the process of locating them, using a Pico to sequentially drive every combination while monitoring the current used with a current sensor. This paid off after only a few minutes, revealing that each character of the display has its own clock and data pins. The protocol is simple: pull the clock and data pins high then send 35 bits, which the display sorts out and lights the corresponding pixels. The video below shows a 12-character scrolling display in action.

Plessey made a lot of displays for military hardware, and these chunky little modules certainly have a martial air about them. Given that and the date code, these might have come from a Cold War-era bit of military hardware, like this Howitzer data display which sports another Plessey-made display.

Continue reading “Old Dot-Matrix Displays Give Up Their Serial Secrets”

MUDLink Is Making UART Data Links More Reliable

Many of us have used UARTs to spit data from one system or chip to another. Normally, for quick and dirty maker projects, this is good enough. However, you’ll always get the odd dropped transmission or glitch that can throw a spanner in the works if you’re not careful. [Jake Read] decided to work on a system that could use UARTs while being far more reliable. Enter MUDLink.

MUDLink is a library that works with an Arduino’s UART port and stacks on a bit of protocol to clean things up. It uses a packetized method of sending data to ensure that transmissions are received reliably as intended by the sender. Packets are framed using a method called Consistent Overhead Byte Stuffing, which is a nice lightweight way of doing so. The system also uses CRC16-CCITT as an error checking mechanism. There’s also an ack-and-retransmit system for ensuring any dropped transmissions are repeated and received successfully.

If you need reliable UART transmissions without too much overhead, you might want to look at what Jake is doing. It’s a topic we’ve looked at before, too.