Making Robot Snakes That Slither, Sidewind, And Strike

[Will Donaldson] has been making robot snakes of all sorts. One of his snakes hugs the ground, slithering across it with a sine wave motion. Flipping it on its side and calling different code, that same snake also moves like an inchworm. Another of his snakes lifts parts of itself upward to move sideways across the ground, again using sine waves.

3D printed scales
3D printed scales

At first, his slithering snake would only oscillate in place on the floor. Looking more closely at biological snakes, he found that part of the reason they moved forward was due to their scales. The scales move smoothly over the ground in one direction but grip when pushed backward or sideways. He also found work done at Harvard University where they combined pumped air and papercraft to make scales which change shape. And so [Will] designed and 3D printed some scales for his snake. However, as you can see in the video below, they didn’t work on carpet.

His success came when he added wheels to each segment. They didn’t work like a car, there was no engine turning the wheels. Instead, they acted more like scales, rotating freely in one direction and gripping when pushed sideways. This success also allowed him to add a parameter to his code for turning left or right.

As we said above, he can flip the ground hugger sideways and run it as an inchworm and he also has a working sidewinder snake variation. The sidewinder can even lift up its head and strike like a cobra. Check out his page if you want to make your own. He’s provided STL files, code, and construction details.

[Will] has a lot of future plans for his snakes. Currently, they’re tethered to a modified ATX power supply but he’d like to incorporate LiPo batteries into the snakes instead. His original goal was to make a tree climbing snake like the one by the Biorobotics lab at Carnegie Mellon University (updated link for the article) but his first snake wasn’t long enough. He still plans on pursuing that as well as an underwater electronic eel. There seems to be no limit to the things he can try. For now, check out the video below to see his successes and his failures so far. Maybe you even have some suggestions for those tricky scales. The undersides of his snake’s segments do seem modular, lending themselves to experimentation.

Continue reading “Making Robot Snakes That Slither, Sidewind, And Strike”

Papercraft-Inspired Snake-bot Slithers Like A Real One

Blend the Japanese folding technique of Kirigami with an elastomer actuator, and what have you got? A locomoting snake robot that can huff around its own girth with no strings attached! That’s exactly what researchers at the Wyss Institute and Harvard School of Applied Sciences did to build their Kirigami Crawler.

Expanding and contracting propel this crawler forward. As the actuator expands, the hatched pattern on the plastic skin flares out; and when it contracts, the skin retracts to a smoother form. The flared hatch pattern acts like a cluster of little hooks, snagging multiple contact points into the ground. When the skin retracts, these hooks fold back inside while giving the body a slight push forward in the process. It’s a clever tactic, and almost identical to the way real-world snakes propel themselves. In fact, after iterating on a few skin patterns, they found that a trapezoidal pattern, which most closely resembles that of snakeskin, can cover ground fastest.

We’re thrilled to see such authentic biomimicry come to us without any extreme tooling or special molds. Still not satisfied with your share of crawling robots for one day? Have a peek into the past, and indulge yourself with a sine-wave locomotion.

Thanks for the tip, [Olivia]!

Continue reading “Papercraft-Inspired Snake-bot Slithers Like A Real One”

Ourobot: What Happens When A Snake Bot Swallows Its Own Tail

For all their joking about “reinventing the wheel”, the team behind Ourobot made a very cool robot (German, automatic translation here). The team, at the University of Applied Sciences in “Bielefeld, Germany“,  built their wheel out of twelve segments, each with its own servo motor, a 3D-printed case, and a pressure sensor mounted on the outside of the wheel. The latter, plus some clever programming, allows the robot wheel to vary its circular gate and climb up over obstacles automatically.

One link in the chain
One link in the chain

There are a bunch of interesting constraints in designing the control for this bot. The tracks on the ground, naturally, have to adjust their relative angles so that they lie each flat on the surface, even if that surface isn’t itself flat or level. The segments in the air are unconstrained, but the sum of all the servos’ interior angles has to add up to 1800 degrees, and these angles control where its center of gravity is.

Our head is spinning. The paper, “OUROBOT – A Self-Propelled Continuous-Track-Robot for Rugged Terrain” is unfortunately behind the IEEE paywall, but goes into detail if you can find it. Continue reading “Ourobot: What Happens When A Snake Bot Swallows Its Own Tail”

Hackaday Prize Entry: Dtto Modular Robot

A robot to explore the unknown and automate tomorrow’s tasks and the ones after them needs to be extremely versatile. Ideally, it was capable of being any size, any shape, and any functionality, shapeless like water, flexible and smart. For his Hackaday Prize entry, [Alberto] is building such a modular, self-reconfiguring robot: Dtto.

ditto_family To achieve the highest possible reconfigurability, [Alberto’s] robot is designed to be the building block of a larger, mechanical organism. Inspired by the similar MTRAN III, individual robots feature two actuated hinges that give them flexibility and the ability to move on their own. A coupling mechanism on both ends of the robot allows the little crawlers to self-assemble in various configurations and carry out complex tasks together. They can chain together to form a snake, turn into a wheel and even become four (or more) legged walkers. With six coupling faces on each robot, that allow for connections in four orientations, virtually any topology is possible.

Each robot contains two strong servos for the hinges and three smaller ones for the coupling mechanism. Alignment magnets help the robots to index against each other before a latch locks them in place. The clever mechanism doubles as an ejector, so connections can be undone against the force of the alignment magnets. Most of the electronics, including an Arduino Nano, a Bluetooth and a NRF24L01+ module, are densely mounted inside one end of the robot, while the other end can be used to add additional features, such as a camera module, an accelerometer and more. The following video shows four Dtto robots in a snake configuration crawling through a tube.

Continue reading “Hackaday Prize Entry: Dtto Modular Robot”

Pipe Crawling Snake Robot Is A Masterpiece Of A Senior Project

Here’s an oldie but a goodie: [Eiki], [Mark], and [Sheraz] built a pipe crawling robot for their senior engineering project at Florida Atlantic University way back in 2004. Despite being a rather old build, its aged well and still demonstrates the clever ways the guys overcame some engineering obstacles.

The original plan for the pipe crawler was to mount three spring-loaded wheels 120° apart at the fore and aft of each robot section. Six independent wheels for each section of the robot is overly complex, and too much for a single operator to control; the team moved on to a ‘screw drive’ system where each wheel is canted forward a few degrees. This drive system propels the snakebot along by simply spinning, although it does bring in a few challenges all its own.

The robot had separate sections consisting to house a motor, camera, and electronics, so a way to pass wires through a rotating shaft was needed. This came in the form of a few pairs of incredibly small ball bearings around a hollow shaft. After the mechanical portion of the build was finished, the team moved on to the electronic part where an IMU was built out of three small gyroscope sensors mounted perpendicularly to each other.

Sadly, there are no videos of the inside of a sewage pipe from the pipe crawler’s point of view, but YouTube wasn’t launched until a year after this project was finished.

Snake Bot

sb head (Custom)

[Husstech] wrote in to share his Snake Bot with us. Initially inspired by this post about SickSack, a snake bot, he set out to build his own version. While the concept and even the design aren’t particularly new or groundbreaking, he is very thorough in his documentation. Since this was a project for school, the PDF of his project includes research, schematics, cost breakdowns, and results. We really like the camera and head design, it looks very insect like. You can see a video of the final version being shown off after the break, or you can see an earlier version that is decidedly more phallic.

Continue reading “Snake Bot”

SickSack: ATMega Servo Snake Robot

[Lars] sent in this sweet snake robot that he and [Aske] built for the DTU Robocup. I’ve seen snake bots before, but I like the concept and the clean electronic design. They used a single AtMega32 controller to generate PWM signals for each of the eight servos, and used a very interesting DC-DC buck converter that’s capable of delivering 16 amps.

For the curious, the bot won the best design and effects award at the competition.