Snowboard And Skateboard So Lit You Can Wipe Out And Still Look Good

[Nate] has made snowboarding cool with his Bluetooth connected board. Using 202 WS2812 LEDs carefully wrapped around the edge of the board and sealed with a conformal coating, it’s bright and waterproof. It’s controlled with an Arduino Nano and a Bluetooth classic board, as well as a large swappable USB battery bank; he can get roughly four hours of life at full brightness on his toy.

Where it gets even cooler is with a six-axis gyro connected to the Nano, which tracks the board movement, and the lights respond accordingly, creating cool patterns based on his speed, angles, and other factors. The app used to control this intense ice-rider is a custom app written using MIT App Inventor, which has the ability to work with Bluetooth classic as well as BLE. This came in handy when he made the 100-LED skateboard, which is based on a Feather with BLE and a large LiPo battery. The challenging part with the skateboard was making the enclosure rugged enough (yet 3D printed) to withstand terrain that is a lot less fluffy than snow.

The connected skateboard is controlled by his phone and a Feather.

We’ve seen others use flashlights and a professional connected board, but it’s been a few years and we’re due for a refreshing (and nostalgic) look back on the winter.

 

World’s First Smart Snowboard Changes Music According To Your Actions

Ever wanted a soundtrack to your life? For a couple of minutes at a time, Signal Snowboards creates that experience with a smart snowboard that varies your music depending on the tricks you perform on your way down the mountain.

The sign on the door says “School For Gifted Hackers”. Inside [Matt Davis] helped interface audio with an accelerometer – something he regularly does with all manner of hacked devices. At first the prototype was an iPhone mimicking the motions of a snowboarder the way fighter pilots describe dogfights with their hands. The audio engine that pulls those mostions to sound is open source and anyone is welcome to do their own tuning.

Once the audio was figured out the boys took it back to their shop and embedded the sensors into a new snowboard. The board is equipped with GPS, an accelerometer, a few rows of LEDs and a bluetooth board to connect to the phone app. It’s all powered by an on-board LiPo battery and a barrel jack out the side to charge it. Channels were cut by hand with a router then electronics sealed in place with epoxy. Not wanting to “just strap some Christmas lights onto a snowboard” the lighting is also connected to the sensors and is programmable.

See the video below of them making the board and taking it out for a test run on Bear Mountain.

Continue reading “World’s First Smart Snowboard Changes Music According To Your Actions”

Self-Balancing Uni-board?

Capture

There are skateboards, long boards, and snowboards. This was originally a snowboard, but we’re not quite sure how to classify it now… Introducing the Segbot Snowboard.

[Steve Ghertner] has been playing around with accelerometers lately and decided to try making something practical. He’s taken a snowboard and turned it into a two-wheeled, segway-like balancing board. The two parallel wheels are powered individually by 12V scooter motors. An Arduino Uno takes care of processing the data from a MPU-6050, which is a triple axis gyro and accelerometer.

You can control the board by leaning, or  by using a small two-button remote. He hasn’t taken it very far out of the lab yet, but plans to after cleaning up the programming a bit.

Stick around for the following video where he explains it at his local hackerspace in Nashville, the Middle TN Robotic Arts Society where members strive to “Control Them (robots) Before They Control You!”

Continue reading “Self-Balancing Uni-board?”

Hackaday Links: Sunday, April 28th, 2013

hackaday-links-chain

Another week has gone by and we hope you’ve been happily hacking away in your underground lairs. If not, here’s some inspiration that didn’t quite make it to the front page this week:

[Razr] used a CFL ballast to replace the mechanical one in his fluorescent tube light fixture.

To make the drawers of his workbench more awesome [Rhys] used the faceplates from some servers.

This week saw some changes in the hobby PCB market. Looks like BatchPCB is being sold to OSH Park starting May 1st. [Thanks Brad]

[Rich Olson] shouldn’t have any trouble getting out of bed now that his alarm clock literally shreds cash if he doesn’t shut it off.

We faced the same problem as [Kremmel] when we first got a Raspberry Pi, no USB keyboard. We bought one but he simply hacked his laptop to work. [Thanks Roth]

You may remember that post about a self-propelled snowboard. Here’s a similar project that uses a screw-drive system.

And finally, if you need help reading a quadrature encoder from a microcontroller this lengthy technical post is the place to look.

Snowboard Propulsion System Motors You Through The Flats

snowboard-propulsion-system

One advantage that skiers have always had over snowboarders is the ability to move through flat sections with ease. [Matt Gardner] built this prototype to help even the playing field. When he would normally need to kick, hop, or remove the board and walk he can now engage his snowboard battery propulsion system.

The rig works much like a paddle boat. The two wheels sticking out to either side of the board push against the slow to move the board forward. The drive train is built from an RC plane speed controller and battery, a motor and gearbox from an 18V drill from Harbor Freight, and a couple of 3D printed gears and mounting brackets. He used a 3D printer to make one drive wheel, then used that to make a silicone mold to cast the wheels used above. The entire assembly is attached to the board with a door hinge. This way the rig can be rotated out of the way (and we assume strapped to his boot) when he’s shredding down the mountain. When paired with an in-goggle HUD this will take snowboarding to the next level!

Unfortunately since it’s already April there’s no snow left to test it on, which means no demo video. But he does tell us that a test run on both grass and carpet went well.

Balancing One Wheel Scooter


Fresh off the tip line, [Ben] sent in his one wheeled balancing scooter. It’s a nice simple design – I just might have to build one myself. The steel frame surrounds a pair of 12V 12Ah SLA batteries, a 400w 24v DC motor, one of the ever handy OSMC motor controllers, rate gyro, accelerometer and a PIC 16F876A. I love the entire concept! (For some reason, I’m thinking it needs a brake light on the rear…

Check out the video after the cut. He walks through the hardware at the end.

By the way, Eliot and I’ll be at Shmoocon in a couple of weeks. We won’t have boards from the Design Challenge yet, but we should have something to give away to people who find us there.

Continue reading “Balancing One Wheel Scooter”