Solar Dynamics Observatory: Our Solar Early Warning System

Ever since the beginning of the Space Age, the inner planets and the Earth-Moon system have received the lion’s share of attention. That makes sense; it’s a whole lot easier to get to the Moon, or even to Mars, than it is to get to Saturn or Neptune. And so our probes have mostly plied the relatively cozy confines inside the asteroid belt, visiting every world within them and sometimes landing on the surface and making a few holes or even leaving some footprints.

But there’s still one place within this warm and familiar neighborhood that remains mysterious and relatively unvisited: the Sun. That seems strange, since our star is the source of all energy for our world and the system in general, and its constant emissions across the electromagnetic spectrum and its occasional physical outbursts are literally a matter of life and death for us. When the Sun sneezes, we can get sick, and it has the potential to be far worse than just a cold.

While we’ve had a succession of satellites over the last decades that have specialized in watching the Sun, it’s not the easiest celestial body to observe. Most spacecraft go to great lengths to avoid the Sun’s abuse, and building anything to withstand the lashing our star can dish out is a tough task. But there’s one satellite that takes everything that the Sun dishes out and turns it into a near-constant stream of high-quality data, and it’s been doing it for almost 15 years now. The Solar Dynamics Observatory, or SDO, has also provided stunning images of the Sun, like this CGI-like sequence of a failed solar eruption. Images like that have captured imaginations during this surprisingly active solar cycle, and emphasized the importance of SDO in our solar early warning system.

Continue reading “Solar Dynamics Observatory: Our Solar Early Warning System”

Hackaday Links Column Banner

Hackaday Links: June 30, 2024

A couple of weeks back we featured a story (third item) about a chunk of space jetsam that tried to peacefully return to Earth, only to find a Florida family’s roof rudely in the way. The 700-gram cylinder of Inconel was all that was left of a 2,360-kg battery pack that was tossed overboard from the ISS back in 2021, the rest presumably turning into air pollution just as NASA had planned. But the surviving bit was a “Golden BB” that managed to slam through the roof and do a fair amount of damage. At the time it happened, the Otero family was just looking for NASA to cover the cost of repairs, but now they’re looking for a little more consideration. A lawsuit filed by their attorney seeks $80,000 to cover the cost of repairs as well as compensation for the “stress and impact” of the event. This also seems to be about setting a precedent, since the Space Liability Convention, an agreement to which the USA is party, would require the space agency to cover damages if the debris had done damage in another country. The Oteros think the SLC should apply to US properties as well, and while we can see their point, we’d advise them not to hold their breath. We suppose something like this had to happen eventually, and somehow we’re not surprised to see “Florida Man” in the headlines.

Continue reading “Hackaday Links: June 30, 2024”

Hackaday Links Column Banner

Hackaday Links: June 9, 2024

We’ve been harping a lot lately about the effort by carmakers to kill off AM radio, ostensibly because making EVs that don’t emit enough electromagnetic interference to swamp broadcast signals is a practical impossibility. In the US, push-back from lawmakers — no doubt spurred by radio industry lobbyists — has put the brakes on the move a bit, on the understandable grounds that an entire emergency communication system largely centered around AM radio has been in place for the last seven decades or so. Not so in Japan, though, as thirteen of the nation’s 47 broadcasters have voluntarily shut down their AM transmitters in what’s billed as an “impact study” by the Ministry of Internal Affairs and Communications. The request for the study actually came from the broadcasters, with one being quoted in a hearing on the matter as “hop[ing] that AM broadcasting will be promptly discontinued.” So the writing is apparently on the wall for AM radio in Japan.

Continue reading “Hackaday Links: June 9, 2024”

Solar Flare Quiets A Quarter Of The Globe

In the “old” days, people were used to the idea that radio communication isn’t always perfect. AM radio had cracks and pops and if you had to make a call with a radiophone, you expected it to be unreliable and maybe even impossible at a given time. Modern technology,  satellites, and a host of other things have changed and now radio is usually super reliable and high-fidelity. Usually. However, a magnitude 7.9 solar flare this week reminded radio users in Africa and the Middle East that radio isn’t always going to get through. At least for about an hour.

It happened at around 10 AM GMT when that part of the world was facing the sun. Apparently, a coronal mass ejection accompanied the flare, so more electromagnetic disruption may be on its way.

The culprit seems to be an unusually active sunspot which is expected to die down soon. Interestingly, there is also a coronal hole in the sun where the solar wind blows at a higher than usual rate. Want to keep abreast of the solar weather? There’s a website for that.

We’ve pointed out before that we are ill-prepared for technology blackouts due to solar activity, even on the power grid. The last time it happened, we didn’t rely so much on radio.

Continue reading “Solar Flare Quiets A Quarter Of The Globe”

Hackaday Links Column Banner

Hackaday Links: June 26, 2022

Head for the hills!! We’re all doomed! At least that’s the impression you might get from the headlines about the monster Earth-facing sunspot this week. While any sunspot that doubles in size within a matter of days as AR3038 has done is worth looking at, chances are pretty low that it will cause problems here on Earth. About the best this class of sunspot can manage is an M-class solar flare, which generally cause radio blackouts only at the poles, and may present a radiation problem for the crew of the ISS. So no, this sunspot is probably not going to kill us all. But then again, this is the 2020s, and pretty much everything bad seems like it’s possible.

Speaking of bad outcomes, pity the poor Sonos customers and their ongoing battle with the company’s odd “glitches.” For whatever reason, customers have been getting shipments of Sonos products they never ordered, with at least one customer getting over $15,000 worth of products shipped. The customer reports ordering five Sonos items, but the company saw fit to fill the order six times, stuffing their apartment with goods. Sonos doesn’t appear to be doing much to make it right; while offering the customer free shipping labels to return the goods, they were expected to schlep the packages to a UPS store. And then there’s the money — Sonos charged the customer for all the unordered goods, and won’t issue a refund till it’s all returned.

If you’ve ever wondered exactly what the signals going up and down your cable line look like, you’ll want to check out this video from Double A Labs. Using an RTL-SDR dongle and some spectrum analyzer software they probed the RF signals on the cable, with some fascinating results. The first 11 minutes or so of the video are devoted to setting up the hardware and software, although there is some interesting stuff about broadband network architecture right up at the start. The scans are interesting — you can clearly see the 6-MHz quadrature amplitude modulation (QAM) digital channels. We were surprised to learn that these start at just about the FM broadcast band — about 108 MHz. There were a couple of little surprises hiding in the spectrum, like two unmodulated analog TV carriers in one spot, and the fact that there are over 400 virtual channels jammed into 41 6-MHz QAM channels. Broadband indeed.

Continue reading “Hackaday Links: June 26, 2022”

Hackaday Links Column Banner

Hackaday Links: February 13, 2022

If you need evidence that our outwardly peaceful little neck of the solar system is actually a dangerous place, look no further than the 40 newly launched Starlink satellites that were just clobbered out of orbit. It seems that the SpaceX launch on February 3 was ill-timed, as it coincided with the arrival of energetic plasma from a solar storm that occurred a few days before. The coronal mass ejection followed an M-class flare on the Sun, which was aimed just right to hit just as the 49-satellite addition to the Starlink constellation was being released. This resulted in an expansion of the upper atmosphere sufficient to increase drag on the newborn satellites — up to 50% more drag than previous launches had encountered. Operators put the satellites into safe mode, but it appears that 40 of them have already met a fiery demise, or soon will. Space is a tough place to make a living.

Continue reading “Hackaday Links: February 13, 2022”

Solar Flares And Radio Communications — How Precarious Are Our Electronics?

On November 8th, 2020 the Sun exploded. Well, that’s a bit dramatic (it explodes a lot) — but a particularly large sunspot named AR2781 produced a C5-class solar flare which is a medium-sized explosion even for the Sun. Flares range from A, B, C, M, and X with a zero to nine scale in each category (or even higher for giant X flares). So a C5 is just about dead center of the scale. You might not have noticed, but if you lived in Australia or around the Indian Ocean and you were using radio frequencies below 10 MHz, you would have noticed since the flare caused a 20-minute-long radio blackout at those frequencies.

According to NOAA’s Space Weather Prediction Center, the sunspot has the energy to produce M-class flares which are an order of magnitude more powerful. NOAA also has a scale for radio disruptions ranging from R1 (an M1 flare) to R5 (an X20 flare). The sunspot in question is facing Earth for the moment, so any new flares will cause more problems. That led us to ask ourselves: What if there were a major radio disruption?

Continue reading “Solar Flares And Radio Communications — How Precarious Are Our Electronics?”