RC Ground Effect Vehicle Skims Over The Water

In the 1960s the Soviet Union began experimenting with what they called ekranoplans, ground effect vehicles (GEVs) that were something of a hybrid between a ship and a large airplane. Their stubby wings didn’t provide enough lift for the vehicle to fly in the traditional sense, the craft essentially rode on a cushion of pressurized air produced by the aerodynamic interaction between the wings and the surface of the water. But after decades of testing, the ekranoplan never became much more than a curiosity for American intelligence agencies to ponder over.

Now [Peter Sripol] has built his own version of what the CIA dubbed the “Caspian Sea Monster”, and judging by the video of him “flying” it around a lake, the design seems to tick all the boxes. The advantage of a GEV is that it’s far faster than a ship and more fuel efficient than an aircraft of similar size. They also operate low enough to avoid enemy radar, which made them very appealing for military applications. Not that any of those characteristics apply to an RC vehicle, but at least it looks cool.

Ironically, it took some extra effort for [Peter] to keep his scratch built ekranoplan from getting airborne. Built out of foam covered with aluminum tape, the craft was light enough that even the tiny wings were enough to break it free from the ground effect if it got going fast enough. It didn’t help that the electric ducted fan motors used were probably a bit too powerful as well.

But by carefully adjusting the throttle and control surfaces, [Peter] was able to keep his craft firmly planted in the ground effect most of the time. Seeing the large RC craft floating just a few inches over the water is very impressive, and thanks to the application of some Soviet-style iconography on its burnished aluminum body, it looks like found-footage from a Cold War test program.

Hackaday readers will likely be familiar with [Peter] and his exploits. From building his own human-scale airplane out of foam board to convincing a cordless drill that it can fly, he’s creations have never been overly concerned with the status quo.

Continue reading “RC Ground Effect Vehicle Skims Over The Water”

3D-Printer And CNC Make This Russian Calculator Bilingual

Let’s be clear right up front: there are probably more obvious solutions to the problem of using a Russian calculator when you don’t speak Russian than printing new keys and engraving translated markings on them. But easy solutions are boring and generally considered beyond the scope of Hackaday articles, so let’s dive in.

They say that mathematics is the universal language, but that’s only true to an extent. Still, even with our limited non-existent Cyrillic skills, the Russian keyboard on this RPN calculator isn’t that hard to figure out. But as [Amen] points out, in the midst of fevered calculations, one prefers not to mentally translate Χ→П to STO or remember that В↑ is the Enter key. So he printed a set of replacements for the confusing keys from PLA. While pondering how to safely fixture such small parts for the later engraving step, [Amen] hit on a genius solution: move the print bed to the CNC router and fixture everything in one go. The resulting characters are large enough to be legible and deep enough to be filled with air-drying polymer clay for contrast. After sanding and polishing, the calculator looks like it came from the Министерство электронной промышленности that way.

Honestly, we’d love to get a look inside this calculator. The insides of Russian electronics can be fascinating, and we’ve even seen entire forums dedicated to decapping Russian parts. But we understand the desire to keep it intact.

Continue reading “3D-Printer And CNC Make This Russian Calculator Bilingual”

Spy Tech: Tiny Spy Plane Becomes Cold War Prize

What looks like something famous, is much smaller, and is embroiled in a web of cold war cloak-and-dagger intrigue? It sounds like the answer could be Mini-Me from the Austin Powers movies, but we were actually thinking of the D-21 supersonic spy drone. Never heard of it? It didn’t have a very long service life, but it was a tiny little unmanned SR-71 and is part of a spy story that would fit right in with James Bond, if not Austin Powers.

The little plane had a wingspan of only 19 feet — compared to the SR-71’s 56 foot span — and was 42 feet long. It could fly at about Mach 3.3 at 95,000 feet and had a range of around 3,500 miles. It shared many characteristics with its big brother including the use of titanium and a design to present a low RADAR cross-section.

The Spy Who Photographed Me

With today’s global economy and increased international cooperation, it is hard to remember just how tense the late 1960s were. Governments wanted to see what other governments were up to. Satellite technology would eventually fill that role, but even though spy satellites first appeared in 1959, they used film that had to be retrieved by an airplane as it fell from the sky and then processed. Not exactly real time. More effective satellites would have to wait for better imaging technology — see the video below for just how bad those old satellite images were. That left spy planes to do the bulk of the work.

Continue reading “Spy Tech: Tiny Spy Plane Becomes Cold War Prize”

In Soviet Russia, Computer Programs You

We admire [Alex Studer’s] approach to schoolwork. His final assignment in his history class was to do an open-ended research project on any topic and — this is key — using any medium. He’d recently watched a video about how Tetris came from the former Soviet Union, and adding in a little eBay research set out to build a period-accurate Soviet computer replica. The post covers the technical details, but if you want to read the historical aspects the school paper is also online.

The first decision was what CPU to use and [Alex] picked the U880 which is a Soviet Z80. All the usual parts you would use with a Z80 have U880 equivalents, so that fleshed out the rest of the design. There were a few concessions made. Instead of a bulky analog monitor, the replica uses an LCD display. Instead of an audio cassette recorder, the new machine uses a CompactFlash socket. We don’t think those are bad decisions. He also replaced the Soviet EPROMs with modern parts. Although the original parts appeared to program correctly, they were unreliable in operation. [Alex] theorizes that his programmer did not generate enough programming voltage to fully program the cells, so they would pass at the low speeds used by the programmer, but not work in the actual circuit.

Continue reading “In Soviet Russia, Computer Programs You”

Modernizing A Soviet-era LED Matrix

Used in everything from calculators to military hardware, the 3LS363A is an interesting piece of vintage hardware. With a resolution of 5 x 7 (plus a decimal point), the Soviet-made displays contain no electronics and are simply an array of 36 green LEDs. It’s not hard to drive one of them in a pinch, but [Dmitry Grinberg] thought this classic device deserved a bit better than the minimum.

He’s developed a small board that sits behind the 3LS363A and allows you to control it over I2C for a much more modern experience when working with these vintage displays. Powered by the ATtiny406, his adapter board makes it easy to chain the modules together and even handles niceties like flipping the displayed image to account for different mounting positions. While most of us probably won’t have the chance to play around with these relatively rare displays, there’s still plenty of useful information here if you’re thinking of creating your own I2C gadgets.

In his write-up, [Dmitry] explains his rationale behind the design and some of the quirks of working with the display. For example he explains how he gave each column of the display its own FET, but to save space on the board ended up running the single decimal point (technically its own column) directly off of a spare GPIO pin. Relying on the low duty cycle, he even left current limiting resistors off the design. The end result is a tiny board that keeps the same footprint of the 3LS363A itself.

[Dmitry] went all out with developing the firmware for his new “smart” 3LS363A displays, and has written up documentation for the different commands he has implemented. From re-configuring the I2C address to updating the firmware, he’s made sure no stone was left unturned for this project. We’re not ones to shy away from a quick and dirty code, but it’s always nice to see when somebody has really put some thought into the software side of a project.

We’ve seen our fair share of oddball Soviet displays here at Hackaday, utilizing everything from heavy duty incandescent bulbs to remarkably tiny “intelligent” LEDs. While it’s unlikely any of them will dethrone the nixie as king of the retro display devices, it’s always interesting to see unusual hardware being used in the wild.

Top Secret Teardown Reveals Soviet Missile Secrets

Technology has moved at such a furious pace that what would have been most secret military technology a few decades ago is now surplus on eBay. Case in point: [msylvain59] picked up a Soviet-era K-13 IR seeker used to guide air-to-air missiles to their targets. Inside is a mechanical gyroscope turning at over 4,000 RPM, a filter made of germanium to block visible light, and a photoresistor. It’s sobering to think you can get all of this in a few small packages these days, if not integrated into one IC.

Fitting on top of a missile, the device isn’t that large anyway, but it is nothing like what a modern device would look like. A complex set of electronics processes the signal and moves steering actuators that control fins and other controls to guide the missile’s flight. You can see a video of the device giving up its secrets, below.

Continue reading “Top Secret Teardown Reveals Soviet Missile Secrets”

Soviet-Era 7-Segment Display, Built Like A Tank

In a way, all 7-segment displays are alike; at least from the outside looking in. On the inside it can be quite another story, and that’s certainly the case with the construction of this Soviet-era 7-segment numerical display. From the outside it may look a bit sturdier than usual, but it’s still instantly recognizable for what it is. On the inside is an unusual mixture of incandescent bulbs and plastic light guides.

The black-coated blocks of plastic on the left (shown from the rear) act as light guides. The holes are for nesting the incandescent bulbs. Note the puzzle-like arrangement of the uniquely shaped pieces.

The rear of the display is a PCB with a vaguely hexagonal pattern of low-voltage incandescent bulbs, and each bulb mates to one segment of the display. The display segments themselves are solid blocks of plastic, one for each bulb, and each a separate piece. These are painted black, with the only paint-free areas being a thin segment at the top for the display, and a hole in the back for the mating bulb.

The result is that each plastic piece acts as a light guide, ensuring that a lit bulb on the PCB results in one of the seven thin segments on the face being lit as well. An interesting thing is that the black paint is the only thing preventing unwanted light from showing out the front, or leaking from one segment to another; usually some kind of baffle is used for this purpose in displays from this era.

More curiously, each plastic segment is a unique shape apparently unrelated to its function. We think this was probably done to ensure foolproof assembly; it forms a puzzle that can only fit together one way. The result is a compact and remarkably sturdy unit that shows how older and rugged tech isn’t necessarily bulky. Another example of small display tech from the Soviet era is this tiny 7-segment display of a completely different manufacture, which was usually used with an integrated bubble lens to magnify the minuscule display.