Taking A $15 Casio F91W 5,000 Meters Underwater

When considering our favorite spy movies and kin that involve deep-sea diving, we’d generally expect to see some high-end watch that costs thousands of dollars and is specially engineered to withstand the immense pressures kilometers below the ocean’s surface. Yet what about a humble Casio F91W that can be bought for about $15 if it’s the genuine article and not one of the millions of fakes? Over at the Watches of Espionage site they figured that they’d dress up one of these famous watches to give it the best possible shot at surviving the crushing pressures at a depth of 5 km.

The actual modification to the F91W was pretty mild, involving nothing but a ‘hydro-mod’ whereby oil is used to replace the air inside the watch case. Since oil is incompressible, nothing bad should happen to the watch. Theoretically at least. The Watch-Under-Test (WUT) was strapped to a US Navy’s CURV 21 remotely operated vehicle and dunked into the ocean before starting its descend into the inky darkness of the deep sea.

Although only hitting a measly 4,950 m, the watch survived just fine, showing that even if you’re a secret US operative on a deep-dive espionage mission, all you really need is one of these Casio watches.

Extreme Waterproof 3D Prints

Since the crew at [CPSdrone] likes to build underwater drones — submarines, in other words — they need to 3D print waterproof hulls. At first, they thought there were several reasons for water entering the hulls, but the real reason was that water tends to soak through the print surface. They’ve worked it all out in the video below.

Since the printer is an FDM printer, it isn’t surprising that the surface has tiny pores; even the tiniest pores will let water in at high pressure. They tried using epoxy to seal the prints, which worked to some degree. They did tests using an example submersible hull that you can try yourself if you like.

Continue reading “Extreme Waterproof 3D Prints”

Flying Submarine Documentary Is A Story Of Defied Assumptions

Donald Reid had a passion for applying himself to challenging problems, and in many ways his life’s work was that of developing a prototype submersible aircraft — or flying submarine — for which his son Bruce was a test pilot. [Jesse Moody] brought to our attention a fantastic documentary he created (with a short teaser trailer here) in which he interviews Bruce, and in the process teaches us all about a story that spanned decades and formed an important part of aviation history. Bruce experienced his share of hair-raising moments while testing the craft, but still has all of his fingers and limbs. Still, in his own words, “you wouldn’t be doing that kind of testing today!”

In many ways, the story revolves around defying assumptions. Without context, a “flying submarine” project might sound like a lone kook’s obsession, but Donald Reid was nothing of the sort. He was a brilliant engineer who was able solve problems by applying his skill and intellect with a laser-like focus. And it turns out that getting a submerged vehicle to successfully transition from waterbound craft to airborne is a source of numerous and novel problems that were not trivial to solve. In fact, these problems needed to be solved in order to develop the Tomahawk cruise missile, which is launched by submarine. And that brings us to the lawsuit that bookended it all.

Continue reading “Flying Submarine Documentary Is A Story Of Defied Assumptions”

We All Live In A PVC Submarine

We doubt you could really live in [Pena’s] PVC submarine, but now the song’s stuck in our head anyway. Although the post is in Portuguese, you can get a pretty good idea of how it works, and translation software is better than ever. Transcending the language barrier, there are videos of just about every step of the construction. We didn’t, however, find a video of the vehicle in the water.

The plumber’s delight has modified motors for thrusters, and a camera as well. Epoxy potting keeps things waterproof. We’ve seen candle wax used for the same purpose in other builds.

Continue reading “We All Live In A PVC Submarine”

Build Your Own Submarine

If you are tried of building things that fly, why not try a submarine like [DIYPerks] did? As you can see in the video below, the key is to control buoyancy, and the mechanism used is impressive. The sub has two giant syringes fore and aft to compress or decompress water. The plungers are now 3D-printed actuators that travel on a lead screw. Two high-torque motors and some batteries sandwiched in acrylic disks make up the rest. This is a big vessel — you won’t be trying this in your bathtub and maybe not even your pool unless it is a big one.

Of course, everything needs to be watertight. Instead of trying to waterproof a power switch, this sub uses a reed switch so that a nearby magnet can turn it on. Not an original idea, but we always think it is more elegant than seals and potting compounds.

Continue reading “Build Your Own Submarine”

A Thousand Feet Under The Sea

If you were to plumb the depth of the oceans, you could only get so far with a snorkel or a SCUBA tank. We don’t know the price, but if you have enough money, you might consider the Triton 3300/6 — a six-person submersible that can go down to 3,300 feet (hence the name–get it–3300/6). Billed as “diving for the entire family,” we aren’t sure we can load grandma and the kids in something like this, but that doesn’t mean we wouldn’t like to try.

The machine can carry up to 1,760 pounds and can make 3 knots which isn’t going to set any speed records. At around 24,000 pounds, the two main thrusters are lucky to make that speed. The view bubble is apparently optically perfect acrylic made by a German company and the company claims the 100-inch diameter bubble is the world’s largest spherical acrylic pressure hull.

Continue reading “A Thousand Feet Under The Sea”

Aruna: An Open Source ROV For Affordable Research

Underwater exploration and research can be exceedingly dangerous, which is why remotely operated vehicles (ROVs) are so commonly used. Operators can remotely command these small submersibles to capture images or collect samples at depths which would otherwise be unreachable. Unfortunately, such technology comes at a considerable price.

Believing that the high cost of commercial ROVs is a hindrance to aquatic conservation efforts, [Noeël Moeskops] has been developing an open source modular ROV he calls Aruna. Constructed largely from off-the-shelf components and 3D-printed parts, the Aruna promises to be far more affordable than anything currently on the market. Hopefully cheap enough to allow local governments and even citizens to conduct their own underwater research and observations.

More than just the ROV itself, Aruna represents an entire system for developing modular underwater vehicles. Whether you decide to build the boilerplate ROV documented and tested by [Noeël], or implement individual components into your own design, the project is a valuable source of hardware and software information for anyone interested in DIY underwater robotics.

Continue reading “Aruna: An Open Source ROV For Affordable Research”