Tesla Model S Battery Pack Teardown

We’ve heard a lot about the Tesla Model S over the last few years, it’s a vehicle with a habit of being newsworthy. And as a fast luxury electric saloon car with a range of over 300 miles per charge depending on the model, its publicity is deserved, and that’s before we’ve even mentioned autonomous driving  driver-assist. Even the best of the competing mass-produced electric cars of the moment look inferior beside it.

Tesla famously build their battery packs from standard 18650 lithium-ion cells, but it’s safe to say that the pack in the Model S has little in common with your laptop battery. Fortunately for those of a curious nature, [Jehu Garcia] has posted a video showing the folks at EV West tearing down a Model S pack from a scrap car, so we can follow them through its construction.

The most obvious thing about this pack is its sheer size, this is a large item that takes up most of the space under the car. We’re shown a previous generation Tesla pack for comparison, that is much smaller. Eye-watering performance and range come at a price, and we’re seeing it here in front of us.

The standard of construction appears to be very high indeed, which makes sense as this is not merely a performance part but a safety critical one. Owners of mobile phones beset by fires will testify to this, and the Tesla’s capacity for conflagration or electrical hazard is proportionately larger. The chassis and outer cover are held together by a huge array of bolts and Torx screws, and as they comment, each one is marked as having been tightened to a particular torque setting.

Under the cover is a second cover that is glued down, this needs to be carefully pried off to reveal the modules and their cells. The coolant is drained, and the modules disconnected. This last task is particularly hazardous, as the pack delivers hundreds of volts DC at a very low impedance. Then each of the sixteen packs can be carefully removed. The packs each contain 444 cells, the pack voltage is 24 V, and the energy stored is 5.3 kWh.

The video is below the break. We can’t help noticing some of the rather tasty automotive objects of desire in their lot.

Continue reading “Tesla Model S Battery Pack Teardown”

Teardown Of Nike Self-Lacing Shoes

There used to be a time, before running shoes had blinking LEDs and required placing on an inductive charger overnight, when we weren’t worried about whether or not we could dump the firmware running underneath our heels. Those are not the times that we’re living in. Nike came out with a shoe that solves the age-old problem of lacing: the HyperAdapt. And [Telind Bench] has torn them apart.

img_0059Honestly, we’re kinda “meh” about what’s inside. The “laces” are actually tubes with a small Kevlar-like cable running inside, and the whole thing torques up using a small, geared DC motor. That’s kinda cool. (We have real doubts about [Telind]’s guess of 36,000 RPM for the motor speed.) But in an age when Amazon gives away small WiFi-enabled devices for a few bucks as a loss-leader to get you to order a particular brand of laundry detergent, we’re not so dazzled by the technology here, especially not at the price of $720 for a pair of freaking shoes.

The only really interesting bit is the microcontroller, which is over-powered for the job of turning a wheel when a keyboard-style sensor is pressed by your heel. What is Nike thinking? We want to see the firmware, and we’d like it reverse engineered. What other chips are on board? Surely, they’ve got an accelerometer and are measuring your steps, probably tying in with an exercise app or something. Does anyone have more (technical) detail about these things? Want to make a name for yourself with a little stunt hacking?

Soviet Era Smoke Detector Torn Down, Revealing Plutonium

It’s widely known that a smoke detector is a good ionizing radiation source, as they contain a small amount of americium-241, a side product of nuclear reactors. But what about other sources? [Carl Willis] got hold of an old Soviet era smoke detector and decided to tear it down and see what was inside. This, as he found out, isn’t something you should do lightly, as the one he used ended up containing an interesting mix of radioactive materials, including small amounts of plutonium-239, uranium-237, neptunium-237 and a selection of others. In true hacker fashion, he detected these with a gamma ray spectroscope he has in his spare bedroom, shielded from other sources with lead bricks and copper and tin sheets. Continue reading “Soviet Era Smoke Detector Torn Down, Revealing Plutonium”

33C3: Hunz Deconstructs The Amazon Dash Button

The Amazon Dash button is now in its second hardware revision, and in a talk at the 33rd Chaos Communications Congress, [Hunz] not only tears it apart and illuminates the differences with the first version, but he also manages to reverse engineer it enough to get his own code running. This opens up a whole raft of possibilities that go beyond the simple “intercept the IP traffic” style hacks that we’ve seen.

dash_block_diagramJust getting into the Dash is a bit of work, so buy two: one to cut apart and locate the parts that you have to avoid next time. Once you get in, everything is tiny! There are a lot of 0201 SMD parts. Hidden underneath a plastic blob (acetone!) is an Atmel ATSAMG55, a 120 MHz ARM Cortex-M4 with FPU, and a beefy CPU all around. There is also a 2.4 GHz radio with a built-in IP stack that handles all the WiFi, with built-in TLS support. Other parts include a boost voltage converter, a BTLE chipset, an LED, a microphone, and some SPI flash.

The strangest part of the device is the sleep mode. The voltage regulator is turned on by user button press and held on using a GPIO pin on the CPU. Once the microcontroller lets go of the power supply, all power is off until the button is pressed again. It’s hard to use any less power when sleeping. Even so, the microcontroller monitors the battery voltage and presumably phones home when it gets low.
Continue reading “33C3: Hunz Deconstructs The Amazon Dash Button”

Body Cardio Weighing Scale Teardown

If you weigh yourself by standing on a bathroom scale, not liking the result, then balancing towards one corner to knock a few pounds off the dial, you are stuck in a previous century. Modern bathroom scales have not only moved from the mechanical to the electronic, they also gather body composition measurements and pack significant computing power.

Yet they’re a piece of domestic electronics that sits in our bathroom and rarely comes under scrutiny. How do they work, and what do they contain? The team at November Five tore down a top-of-the-range Withings Body Cardio scale to find out.

After a struggle with double-sided sticky pads, the scale revealed its secrets: a simple yet accomplished device. There are four load cells and the electrodes for the body measurement, and the PCB. On the board is a 120 MHz ARM Cortex M4 microcontroller, a wireless chipset, battery management, and the analogue measurement chipset. This last is particularly interesting, a Texas Instruments AFE4300, a specialised analogue front-end for this application. It’s a chip most of us will never use, but as always an obscure datasheet is worth a read.

The rather pretty fractal antenna.
The rather pretty fractal antenna.

Finally, the wireless antenna is not the normal simple angular trace you’ll be used to from the likes of ESP8266 boards, but an organic squiggle. It’s a fractal antenna, presumably designed to present a carefully calculated bandwidth to the chipset. A nice touch, though one the consumer will never be aware of.

We’ve shown you quite a few bathroom scales over the years. There was this wisecracking Raspberry Pi scale, this scale reverse engineered to gather weight data, and this one laid bare for use as a controller.

Silicon Wafer Transfer Machine Is Beautifully Expensive

There’s nothing more freeing than to be an engineer with no perceptible budget in sight. [BrendaEM] walks us through a teardown of a machine that was designed under just such a lack of constraint. It sat inside of a big box whose job was to take silicon wafers in on one side and spit out integrated circuits on the other.

[BrendaEM] never really divulges how she got her hands on something so expensive that the engineer could specify “tiny optical fiber prisms on the end of a precision sintered metal post” as an interrupt solution for the wafer.  However, we’re glad she did.

The machine features lots of things you would expect; pricey ultra precise motors, silky smooth linear motion systems, etcetera. At one point she turns on a gripper movement, the sound of it moving can be adequately described as poetic.

It also gives an unexpected view into how challenging it is to produce the silicon we rely on daily at the ridiculously affordable price we’ve come to expect. Everything from the ceramic plates and jaws that can handle the heat of the silicon right out of the oven to the obvious cleanliness of even this heavily used unit.

It’s a rare look into an expensive world most of us peasants aren’t invited to. Video after the break.

Continue reading “Silicon Wafer Transfer Machine Is Beautifully Expensive”

Soviet Portable Scopemeter Teardown

Browsing YouTube may prove to be your largest destroyer of productive time outside of Hackaday, once you have started looking at assorted Lincolnshire plumbers or young Ukrainians doing dangerous stunts it’s easy to lose an hour with very little to show for it. There is so much to divert our attention, it’s a wonder that any of us ever make anything!

So to ensure you lose a further quarter hour today, we’d like to bring you [Jesper Broe]’s demonstration and teardown of his latest oscilloscope. This might seem unpromising when we tell you it’s a single-trace model with a bandwidth of 10MHz, but don’t give up. This is a RIMEDA C1-112, a portable instrument made in Lithuania when the country was part of the Soviet Union, and its party piece is that it contains a digital multimeter with a vector display using the oscilloscope CRT.

We’re shown the compact device being unpacked, then put through its paces as an oscilloscope. It gives useful results above 10MHz, but it is visibly losing amplitude and eventually it has trouble triggering as the frequency increases. Interestingly all the controls work in the opposite direction to the ones you will be used to, anticlockwise rotation increases rather than decreases. Then we’re shown the multimeter function, which is compared to a modern DMM and found to be still pretty accurate after nearly three decades.

The ‘scope’s lid is then removed, and we see something of the logic boards that produce the digital display. A host of Soviet K155 series logic ICs are at the heart of it, and at the end of the video we’re shown a period review in Russian with a glimpse at the waveforms they produce to vector draw the figures.

Take a look at the video below the break, we’re sure you’ll agree it’s an instrument that many of us would still find useful today.

Continue reading “Soviet Portable Scopemeter Teardown”