Bad Experiences With A Cheap Wind Turbine

If you’ve got a property with some outdoor space and plenty of wind, you might consider throwing up a windmill to generate some electricity. Indeed, [The Broject List] did just that. Only, his experience was a negative one, having purchased a cheap windmill online. He’s warning off others from suffering the same way by explaining what was so bad about the product he bought.

The windmill in question was described as a “VEVOR Windturbine”, which set him back around 100 euros, and claimed to be capable of producing 600 watts at 12 volts. He starts by showing how similar turbines pop up for sale all over the Internet, with wildly inflated specs that have no relation to reality. Some sellers even charge over 500 euros for the same basic device.

He then demonstrates the turbine operating at wind speeds of approximately 50 km/h. The output is dismal, a finding also shared by a number of other YouTube channels out there. Examining the construction of the wind turbine’s actual generator, he determines that it’s nowhere near capable of generating 600 watts. He notes the poorly-manufactured rotor and aluminium coils as particular disappointments. He concludes it could maybe generate 5 watts at most.

Sadly, it’s easy to fall into this trap when buying online. That’s where it pays to do your research before laying down your hard-earned cash. Continue reading “Bad Experiences With A Cheap Wind Turbine”

Typhoon-Tough Turbines Withstand Wild Winds

It’s really beginning to feel as though the problem of climate change is a huge boulder rolling down a steep hill, and we have the Sisyphean task of trying to reverse it. While we definitely need to switch as much of the planet over to clean, green energy as soon as possible, the deployment should be strategic. You know, solar panels in sunny places, and wind turbines in windy places. And for the most part, we’re already doing that.

A test unit in Okinawa, Japan. Image via Challenergy

In the meantime, there are also natural disasters to deal with, some of which are worsened by climate change. Eastern and Southeast Asian countries are frequently under the threat of typhoons that bring strong, turbulent winds with them. Once the storms pass, they leave large swaths of lengthy power outages in their wake.

Studies have shown that these storms are gaining strength over the years, leading to more frequent disruption of existing power systems in those areas. Wind power is the ideal solution where storms have come through and knocked out traditional power delivery all over a region. As long as the turbines themselves can stand up to the challenge, they can be used to power micro-grids when other delivery is knocked out.

Bring On the Typhoons?

Unfortunately, the conventional three-bladed wind turbines you see dotting the plains can’t stand up to the awesome power of typhoons. But vertical axis wind turbines can. Though they have been around for many years, they may have finally found their niche.

A Japanese startup called Challenergy wants to face the challenge of typhoons head on. They’ve built a vertical axis wind turbine that’s built to not only to withstand typhoon-level winds, it’s designed to make the most of them. Instead of horizontally-situated blades arranged like spokes or flower petals, these turbines have vertical cylinders that collect wind by harnessing the Magnus effect.

Continue reading “Typhoon-Tough Turbines Withstand Wild Winds”

HAWT Wind Turbine Is Mostly 3D Printed

Wind turbines are a great source of renewable energy, and a great DIY project, too. They can be built with all kinds of materials and the barrier for entry is low for the beginner. [Fab] has built just such a device, taking advantage of modern construction techniques, and dubbed it the WinDIY.

The WinDIY design is mostly 3D printed, with a familiar three-bladed design. The diameter of the rotor is 1.2 m, meaning that braking and regulating the turbine is required for safety in high winds. [Fab] is aiming to achieve this control with a combination of mechanical and electronic braking, as well as variable-pitch blades. The benefit of 3D printing the design is it allows iterations to be made quickly, particularly of parts with complex geometries that would be too time-consuming or expensive to machine otherwise.

[Fab]’s writeup goes into great detail on topics like the design of the pitch control systems and other minutae, which should serve as a great reference for anyone else working on a similar project. If you’re looking for something with more of a sci-fi future vibe, consider attempting a vertical-axis build instead.

Building A Wind Power Generator In Your Backyard

For many environmental enthusiasts, horizontal-axis wind turbines (HAWTs) — the kind that look like windmills slowly spinning in the distance — are a pretty familiar sight. Unfortunately, there are quite a few caveats that make them harder to adopt despite the fact that harvesting renewable energy sources is more sustainable than relying on natural gas and fuels that can be depleted. Since they face in one axis, they need to be able to track the wind, or else trade off the ability to maximize energy output. In turbulent and gusty conditions, as well, HAWTs face accelerated fatigue when harvesting.

The development of the vertical-axis wind turbine (VAWT) solves several of these issues. In addition, the turbines are typically closer to the ground and the gearbox replacement is simpler and more efficient. Maintenance is more accessible due to the size of the turbines, so no heavy machinery is typically necessary to access crucial components on-site. In addition, the gearbox by nature of its operation takes on less fatigue and is able to function in turbulent winds, which reduces the rate of failure.

For a simple version of a VAWT that you can build yourself, [BlueFlower] has published several mechanical drawings that detail the layout of the design. The wind power generator uses 24 magnets, copper wire fashioned into coils, and a metal plate for the main generator. The coils are arranged in a circular formation on a static plate, while the magnets are equally spaced on a moving circular plate. As the magnets pass over coils, the flux induces a current, which increases as the plates spin faster.

The blades of the generator are made from blue foam with a metal bar running through it for structure. Three of the blades are attached with triangular bars to a central rod, which also holds the spinning magnetic plate.

In [BlueFlower]’s initial trials using the VAWT for charging a battery they were able to generate a max power of 15W on boost mode and 30-70W when charging in PWM mode. Not bad for a home-made wind power generator!

There aren’t only pros to the design, however. While VAWTs may be cheaper, more mobile, and more resistant to wear and tear, there are some design features that prevent the generators from functioning as well as HAWTs at harvesting energy. The blades don’t produce torque at the same time, with some blades simply being pushed along. This produces more drag on the blades when they rotate, limiting the efficiency of the entire system. In addition, higher wind speeds are typically found at higher altitudes, so the VAWTs will perform better if installed on a towering structure. Vibration forces close to the ground can also wear out the bearings, resulting in more maintenance and costs.

 

 

Continue reading “Building A Wind Power Generator In Your Backyard”

DIY Wind Turbine For Where The Sun Doesn’t Shine

There are plenty of places outside where you may like to have a project requiring electricity that may not get enough sun for solar power to be viable. Perhaps wind power could be used instead? [Greg] has a project to create a platform for using a small wind turbine to generate the power for your projects.

The wind turbine that [Greg] designing is a Savonius-style wind turbine that would put out between 5 and 12 volts. In a Savonius turbine, blades are mounted on a vertical axis allowing for a smaller, less complicated build than traditional horizontal axis wind turbines. The design is named for its inventor, Finnish engineer Sigurd Johannes Savonius.

After doing some research, the design will have a 2:1 height to blade ratio and use three pairs of overlapping curved blades stacked on top of each other, each pair offset by 120 degrees. This design, [Greg] figures, will come within a few percentage points of the efficiency of more exotic blade shapes while making the windmill easy to design and implement. Being half cylinders, the blades can easily be made from existing objects cut in half – pop cans, for example, but there has been some designing the blades in Fusion 360 for 3D printing. The stator board has been designed and the initial prototypes of it and the rotor have arrived, so the testing can now commence.

Once the design is finalized and the prototype working, it’d be interesting to see some projects start showing up using wind power instead of solar power. Take a look at this design for a vertical wind turbine, and this design for a simple, straightforward turbine.

 

Make A Wind Turbine From 55 Gallon Drums

vertical axis wind turbine

Although there are several vertical axis wind turbines listed on greenterrafirma’s page, the one built with 55 gallon drums was especially interesting to us.  Although the spouse approval factor of any of these designs is debatable, at $100, the 55 gallon drum design could provide a very good return on investment.  The tools required to make one of these are relatively simple, so this could make this experiment accessible to those without a vast arsenal of equipment.

If large blue barrels aren’t your thing, the post also features several other turbine designs, including one made with wood and aluminium foil, and one constructed out of PVC pipe.  The video after the break does a good job of explaining the “blue barrel” construction process, but if you’d rather just see this [VAWT] in action, fast forward to 5:25.

Continue reading “Make A Wind Turbine From 55 Gallon Drums”

Vertical Axis Wind Turbine Update

[Faroun] sent in his updated vertical wind turbine. After running his previous one for a while, he felt that the motor he was using was inadequate, it required too high of RPM to produce what he wanted. He didn’t want to gear it up, fearing that the light construction couldn’t sustain rotation.

He built a new version that has the same surface area of fins, but much higher RPM. The new one, dubbed V8 is made mainly from PVC and an Amatek DC motor. His goal was to produce 100 watts at 35km/h. He doesn’t really state whether or not he achieved it though.