Building A Miniature X-ray Tube

tube

We’ve seen homemade x-ray devices and we’ve seen people making vacuum tubes at home. We’ve never seen anyone make their own x-ray tube, though, and it’s doubtful we’ll ever see the skill and craftsmanship that went into this build again.

An x-ray tube is a simple device; a cathode emits electrons that strike a tungsten anode that emits x-rays. Most x-ray tubes, though, are relatively large with low-power mammography tubes being a few inches in diameter and about 6 inches long. In his amazing 45-minute-long video, [glasslinger] shows us how to make a miniature vacuum tube, a half-inch in diameter and only about four inches long.

For those of you who love glass lathes, tiny handheld spot welders and induction heaters, but don’t want your workshop bathed in x-rays, [glasslinger] has also built a  few other vacuum tubes, including a winking cat Nixie tube. This alternate cat’s eye tube was actually sealed with JB Weld, an interesting technique if you’d ever like to make a real home made tube amp.

Airport X-ray Machine Teardown

Who has an airport carry-on X-ray machine sitting in their garage? Apparently [Mike] does, and he’s sharing the fun by posting a video teardown series that really digs into the machine’s hardware and operating system.

At this point the series includes six lengthy segments. The first episode, which you’ll find embedded after the break, starts with an external overview of the hardware. [Mike] mentions that it’s not functional at that point. He guesses that this has to do either with security settings to enable the machine (it does produce x-ray after all) or corrupt memory in an EPROM chip. The password lockout is later confirmed when he looks at a code disassembly and finds strings requesting username and password to gain access to some of the menus. The second installment involves more disassembly to figure out the passwords and gain full access to the machine. By the fourth video he’s X-raying random items from around the shop and then some.

It’s a lot to watch, but it’s exciting to see how far he gets with the rare equipment.

Continue reading “Airport X-ray Machine Teardown”

In-depth Look At An LVCD Board From A Saturn V Rocket

saturn-v-lvdc-board

Join [Fran] as she dons the hat of an electronics archaeologist when looking at this vintage circuit board from the space race. As part of her personal collection she somehow acquired a Launch Vehicle Digital Computer board for a Saturn V rocket. This particular unit was never used. But it would have been had the Apollo program continued.

[Fran] is enamored with this particular board because she believes it is the forerunner of modern digital circuit design and layout. Since routing circuit boards is part of what she does for a living you can see why this is important to her. Also, who isn’t excited by actual hardware from the space program? We’ve embedded two of her videos after the break. In the first she shows off the component to the camera and speaks briefly about it. But the second video has her heading to the dentist’s office for X-rays. The image above is a rotating X-ray machine, but it looks like the best imagery comes when a handheld gun is used. They get some great images of the traces, as well as the TTL components on the board itself.

Continue reading “In-depth Look At An LVCD Board From A Saturn V Rocket”

[Ben Krasnow] Builds A CT Scanner

gif

After building a homebrew x-ray backscatter imager, [Ben Krasnow] realized he had nearly all the components to build his own CT scanner, able to make a 3D model of the inside of a frozen chicken.

Basically, a CT scanner takes dozens of x-rays of an object and reassembles them with the help of fancy algorithms to allow doctors to peer inside a human body. The CT scanners you’ll find at your local hospital are monstrous devices, rotating an x-ray tube and sensor around a patient with the help of some very heavy duty electromechanical engineering. [Ben] wanted to keep his build rather small, so instead of rotating the x-ray tube and screen around an object, he simply made a stepper motor-driven lazy suzan to rotate his frozen bird.

[Ben] set a digital camera off to the side of his build and captured 45 images of a rotating chicken. After correcting for the perspective distortion, the images were thrown into 3D Slicer to create a true 3D representation of a x-rayed chicken.

Continue reading “[Ben Krasnow] Builds A CT Scanner”

DIY TSA Backscatter Body Scanner

[Ben Krasnow] built his own version of the TSA’s body scanner. The device works by firing a beam of x-rays at at target. Some of the beam will go through the target, some will be absorbed by the target, and some will reflect back. These reflected x-rays are called ‘backscatter‘, and they are captured to create an image.

In [Ben]’s setup a rotating disk focuses x-rays into beams that travel in arcs across the X-axis. The disk is moved along the Y-axis to fill in the scan. On the disk assembly, there is a potentometer to measure the y-axis position of the beam, and an optical sensor to trigger an oscilloscope, aligning the left and right sides of the image. Using these two sensors, the scope can reconstruct an X-Y plot of the scan.

To detect the x-rays, a phosphorous screen turns the backscattered x-rays into visible light, and a photo-multiplier amplifies the light source. A simple amplifier circuit connects the photo-multiplier to a scope, controlling the brightness at each point.

The result is very similar to the TSA version, and [Ben] managed to learn a lot about the system from a patent. This isn’t the first body scanner we’ve seen though: [Jeri Ellsworth] built a microwave version a couple years ago.

The impressive build does a great job of teaching the fundamentals of backscatter imaging. [Ben] will be talking about the project at EHSM, which you should check out if you’re in Berlin from December 28th to the 30th. After the break, watch [Ben]’s machine scan a turkey in a Christmas sweater.

Continue reading “DIY TSA Backscatter Body Scanner”

Large Area X-ray Detector

This is an x-ray detector built by [Ben Krasnow]. It’s an interesting combination of parts working with an oscilloscope. The result is an audible clicking much the same as you would hear from a Geiger counter

He’s measuring backscatter, which is the reflection of x-rays on other objects. Because the signal will be quite weak compared to waves emitted directly from an x-ray source he needed a large collector to measure them. He started by gutting an x-ray image intensifying cassette. This has a phosphor layer that glows when excited by x-rays. The idea is that the glowing phosphors do a better job of exposing film than direct x-rays can. But [Ben’s] not using film. He built that pyramid-shaped collector with the phosphor material as the base. At the apex of the pyramid he mounted a photomultiplier tube (repurposed from his scanning electron microscope) which can detect the excited points on its surface. His oscilloscope monitors the PMT, then issues a voltage spike on the calibration connector which is being fed to an audio amplifier. Don’t miss his presentation embedded after the break.

[Ben] mentions that this build is in preparation for a future project. We’d love to hear what you think he’s working on. Leave your guess in the comments section.

Continue reading “Large Area X-ray Detector”

Building An X-ray Machine And Letting Everything Go To Your Head

It’s not every day one of the builds on Hackaday gets picked up by a big-name publication, and it’s even rarer to see a Hackaday contributor grace the pages of an actual print magazine. Such is the case with [Adam Munich] and his home-built x-ray machine.

We first saw [Adam]’s x-ray machine at the beginning of this year as an entry for the Buildlounge/Full Spectrum laser cutter contest. [Adam] won the contest, landed himself a new laser cutter, and started writing for Hackaday. Now that [Adam] is gracing the pages of Popular Science, we’re reminded of the story of Icarus, flying too close to the sun.

[Adam]’s x-ray machine is built around a Coolidge tube, the same type of vacuum tube found in dental x-ray machines. The device is housed in two suitcases – one used as a control panel and graced with beautiful dials and Nixies, the other housing the Coolidge tube and power supply. Proper x-ray images can be taken by pointing a camera at the scintillation screen, allowing [Adam] to see inside hard drives and other inanimate objects.

Sure, it’s a build we’ve seen before but it’s still very cool to see one of Hackaday’s own get some big name recognition.