The 2000GB iPod You Wished For In The 00’s Is An iSore

Remember those times we all said that we wouldn’t mind it if the iPod was three times as thick but could store a lot more songs and the battery lasted forever? Well, the I-Sore will let us truly consider our stance on the subject.

The iSore would have definitely made some of us the coolest kids on the yard in Jr. High (or at the engineering office) in the 00’s. At first glance we assumed it would be one of those fancy single board computers packaged with a big hard drive masquerading as an iPod. We were surprised to discover that [jimbone] was performing a classic iPod hack.

The ipod’s back is pried off and discarded. A ZIF to SATA adapter connects it to a significantly larger hard drive. The basic battery is replaced with an 8Ah pack. The USB ports are broken out. For the case there are a few options. There’s a 3D printed case, a wooden case, and even one that looks like a Lovecraftian horror.

[jimbone] claims 100 hours of playtime on a single charge. He hasn’t claimed bulking up a bit from carrying it around, but we can make our guesses.

Removing a Broken Tap From Something Really Really Expensive

What happens when you break a tap or a bolt in a component whose price tag sits in the tens of thousands. Just drilling it out and throwing in a nut insert stops being acceptable. Is there a way to remove the tap without damaging the master part at all?

Broken tap stuck in the hole it was threading
Broken tap stuck in the hole it was threading

Well, that’s where [Tom Grafton] of Jerry’s Broken Drill and Tap comes in. He’s here to remove taps and chew bubblegum, and he’s definitely chewing bubble gum loudly the whole time. His primary work horse is a Metal Disintegration Machine.

A MDM is basically half of a typical wire EDM set-up. In EDM you used an electrode to punch a hole through the material. Then you thread a wire through the hole, thread it through a sometimes startling array of pulleys, and get going.

[Tom] used the MDM with an appropriately sized electrode to precisely disintegrate the middle of the tap out. After that it’s some careful work with a specially machined magnetic chisel. A quick chase of the threads with a tap and it’s back to the customer.

As you can see in the video after the break, the end result is a threaded hole that’s so indistinguishable from the rest he has to mark which one it was; presumably so the customer doesn’t forget why they’re paying him.

Continue reading “Removing a Broken Tap From Something Really Really Expensive”

Hackaday Prize Entry: DIY Foot Orthotics

What does your gait look like to your foot? During which part of your gait is the ball of your feet experiencing the most pressure? Is there something wrong with it? Can you fix it by adding or removing material from a custom insole? All these answers can be had with an expensive system and a visit to a podiatrist, but if [Charles Fried] succeeds you can build a similar system at home. 

The device works by having an array of pressure sensors on a flat insole inside of a shoe. When the patient walks, the device streams the data to a computer which logs it. The computer then produces a heat map of the person’s step. The computer also produces a very useful visualization called a gait line. This enables the orthotist to specify or make the correct orthotic.

[Charles]’s version of this has another advantage over the professional versions. His will be able to stream wirelessly to a data logger. This means you can wear the sensor around for a while and get a much more realistic picture of your gait. Like flossing right before the dentist, many people consciously think about their gait while at the foot doctor; this affects the result.

He currently has a prototype working. He’s not sure how long his pressure sensors will last in the current construction, and he’s put wireless logging on hold for now. However, the project is interesting and we can’t wait to see if [Charles] can meet all his design goals.

The HackadayPrize2016 is Sponsored by:

Transcend Wifi SD Card Is A Tiny Linux Server

[jamesone111] bought a Transcend WifiSD card, presumably for photography, but it may just have been because he heard that they’re actually tiny Linux servers.

He read a post about these cards on the OpenWRT forums. They’re all a similar configuration of a relatively large amount of memory (compared to the usual embedded computer), a WiFi chip, and an ARM processor running a tiny Linux install. The card acts as a WiFi access point with a little server running on it, and waits for the user to connect to it via a website. It also has a mode where it will connect to up to three access points specified by the user, but it doesn’t actually have a way to tell the user what its IP address is; which is kind of funny.

[jamesone111] hacked around with the Transcend card for a bit. He found it pretty insecure, which as long as you’re not a naked celebrity, shouldn’t be a huge issue. For the hacker this is great as it opens up the chance of hacking the firmware for other uses.

Some have already pulled off some cool hacks with these cards. For example, [peterburk] hacked a similar card by PQI to turn his iPod into a portable file server. 

Fail Of The Week (in 1996): The 7 Billion Dollar Overflow

The year was 1996, the European Space agency was poised for commercial supremacy in space. Their new Ariane 5 Rocket could launch two three-ton satellites into space. It had more power than anything that had come before.

The rocket rose up towards the heavens on a pillar of flame, carrying four very expensive and very uninsured satellites. Thirty-seven seconds later it self destructed. Seven billion dollars of RUD rained down on the local beaches near the Guiana Space Centre in Southern South America. A video of the failed launch is after the break.

The cause of all this was a single improper type cast in a bit of code that wasn’t even supposed to run during the actual launch. Talk about a fail.

There were two bits of code. One that measured the sideways velocity, and one that used it in the guidance system. The measurement side used a 64 bit variable, but the guidance side used a 16 bit variable. The code was borrowed from an earlier, slower rocket whose velocity would never grow large enough to exceed that 16 bits. The Ariane 5, however, could be described with a Daft Punk song, and quickly overflowed this value.

The code that caused the overflow was actually a bit of pre-launch software that aligned the rocket. It was supposed to be turned off before the rocket firing, but since the rocket launch got delayed so often, the engineers made it timeout 40 seconds into the launch so they didn’t have to keep restarting it.

The ESA never placed blame on a single contractor. The programmers had made assumptions. The engineers had made reasonable shortcuts to make their job easier. It had all made it through inspections, approvals, and finally the launch event.

They certainly learned from the event; the Ariane 5 rocket has flown 82 out of 86 missions successfully since then. It has at least five more launches contracted before it is retired in 2023 for the Ariane 6 rocket being developed now. This event also changed the way critical software and redundant systems were tested, bringing the dangers of code failure to the attention of the public for the first time.

If you want to read more, there is a great discussion on Reddit which tipped us off to this fail, a quite thorough Wikipedia article, and the original article that ran in the New York Times is mirrored here.

Continue reading “Fail Of The Week (in 1996): The 7 Billion Dollar Overflow”

Puzzling Out an 80s Puzzle Toy

[Ido Gendel] looks back a time in the 80s when kids would learn by answering the questions to quizzes on their “TOMY Teacher,” or, “Sears Quiz-A-Tron”. There’s a bit of a conundrum with this toy. How did it know which answers were correct. Chip memory of any kind wasn’t the kind of thing you’d sweep into the dust bin if you had extras like it is now; it was expensive.

To use the toy, the child would place the notebook in the plastic frame on the device. They’d open the page with the quiz they would like to take. Printed in the upper left hand corner were three colored squares. There was a matching set of colored buttons on the device. They’d press the corresponding buttons in order from top to bottom and then the machine would magically know which answers on the quiz were correct.

[Ido] wondered how the machine handled this information. Was there an internal table for all 27 possible codes? Did it generate the answer table somehow? He sat down with a spreadsheet filled with the notebook code on the left and the corresponding correct answers on the right. Next he stared at the numbers.

He eventually determined that there was a pattern. The machine was using the colored squares as the input for a function that determined what the answers were. A table would have only taken up 68 bytes, but with one 80s chip on board, sounds to play, and lights to switch on and off, the machine needed all the free space it could get.

Wireless Robotic Gripper With Haptic Feedback

We’re not sure what kind of, “High School,” [Sam Baumgarten] and [Graham Hughes] go to that gave them the tools to execute their robotic gripper so well. We do know that it was not like ours. Apparently some high schools have SLS 3D printers and Solidworks. Rather than a grumpy shop teacher with three fingers who, despite that, kept taking the safety off the table saws and taught drafting on boards with so many phalluses and names carved into the linoleum, half the challenge was not transferring them to the line work.

Our bitterness aside, [Sam] and [Graham] built a pretty dang impressive robotic gripper. In fact, after stalking [Sam]’s linkedin to figure out if he was the teacher or the student, (student) we decided they’re bright enough they could probably have built it out of scraps in a cave. Just like [HomoFaciens], and Ironman.

The gripper itself is three large hobby servos joined to the fingers with a linkage, all 3D printed. The mechanical fingers have force sensors at the contact points and the control glove has tiny vibrating motors at the fingertips. When the force of the grip goes up the motors vibrate more strongly, providing useful feedback. In the video below you can see them performing quite a bunch of fairly fine motor skills with the gripper.

The gripper is mounted on a pole with some abrasive tape, the kind found on skateboard decks. At the back of the pole, the electronics and batteries live inside a project box. This provides a counterbalance to the weight of the hand.

The control glove has flexible resistors on the backs of the fingers. The signal from these are processed by an Arduino which transmits to its  partner arduino in the gipper via an Xbee module.

[Sam] and [Graham] did a great job. They worked through all the design stages seen in professional work today. Starting with a napkin sketch they moved onto digital prototyping and finally ended up with an assembly that worked as planned. A video after the break explaining how it works along with a demo video.

Continue reading “Wireless Robotic Gripper With Haptic Feedback”