Ikea Furniture Hacks Make Accessibility More Accessible

The ThisAbles project is a series of 3D-printed IKEA furniture hacks making life easier for those without full use of their bodies. Since IKEA furniture is affordable and available across most of the planet, it’s the ideal target for a project that aims to make 3D-printed improvements accessible to everyone.

These hacks fit all meanings of the word “accessible”: Available worldwide, affordable, and helping people overcome physical barriers of everyday living. ThisAbles has support of multiple organizations including IKEA Israel. In their short introductory video (embedded below the break) they explained their process to find ways to make big impacts with simple 3D-printed modifications. From bumpers protecting furniture against wheelchair damage, to handles that allow drawers to be opened without fine fingertip control. Each of these designs also fit the well-known IKEA aesthetic, including their IKEA style illustrated manuals.

The site launched with thirteen downloadable solutions, but they have ambitions for more with user feedback. There’s a form where people can submit problems they would like to see solved, or alternatively, people can submit solutions they’ve already created and wish to share with the world. Making small changes to commodity IKEA furniture, these 3D printed accessories will have far more impact on people’s lives than the average figurine trinket on Thingiverse. It’s just the latest way we can apply hacker ingenuity to help others to do everything from simple daily tasks to video gaming.

[via Washington Post]

Continue reading “Ikea Furniture Hacks Make Accessibility More Accessible”

Overlooked Minimalism in Assistive Technology

If your eyes are 20/20, you probably do not spend much time thinking about prescription eyeglasses. It is easy to overlook that sort of thing, and we will not blame you. When we found this creation, it was over two years old, but we had not seen anything quite like it. The essence of the Bear Paw Assistive Eating Aid is a swiveling magnet atop a suction cup base. Simple right? You may already be thinking about how you could build or model that up in a weekend, and it would not be a big deal. The question is, could you make something like this if you had not seen it first?

Over-engineered inventions with lots of flexibility and room for expansion have their allure. When you first learn Arduino, every problem looks like a solution for that inexpensive demo board and one day you find yourself wearing an ATMEGA wristwatch. Honestly, we love those just as much but for an entirely different reason. When all the bells and whistles are gone, when there is nothing left but a robust creation that, “just works,” you have created something beautiful. Judging by the YouTube comments of the video, which can be seen below the break, those folks have no trouble overlooking the charm of this device since the word “beard” appears 95 times and one misspelling for a “bread” count of one. Hackaday readers are a higher caliber and should be able to appreciate its elegance.

The current high-tech solution for self-feeding is a robot arm, not unlike this one which is where our minds went when we heard about an invention about eating without using hands, and we will always be happy to talk about robot arms.

Continue reading “Overlooked Minimalism in Assistive Technology”

Hackaday Prize Entry: $50 Foot Controlled Mouse

ALS robbed one of [C. Niggel]’s relative’s of the use of their upper body. This effectively imprisoned them in their house; ALS is bad stuff. Unfortunately too, the loss of upper body mobility meant that they couldn’t even use the computer to interact with people and the outside world. However, one day [C. Niggel] noted that the relative’s new electric wheelchair was foot controlled. Could this be adapted to a computer mouse?

He looked up commercial solutions and found them not only prohibitively expensive, but also fraught with proprietary drivers and all sorts of bad design nonsense. With all of the tools out there today there was no reason this couldn’t be quickly prototyped and sent to the relative in need.

He used a combination of conductive thread, neoprene, and velostat to build the pads themselves. The pads were balanced with some adjusting resistors in series. The signals are sent to an Adafruit Feather board which interprets them and converts it to a PS/2 standard.

The first version of the mouse used separate pads glued to a MDF board with contact cement. However this, along with some other initial design flaws, resulted in premature failure of the mouse. [C. Niggel] quickly returned to the lab and produced a new version with more robust construction and mailed it off. So far so good!