The iPad Controlled Camera Slider

[Daniel] and [Tobias] dabble in videography and while they would love a camera slider controlled by their favorite iDevice, commercial motorized camera sliders are expensive, and there’s no great open source alternative out there. They decided to build one for themselves that can be controlled either from a PS3 controller or from its own iPad app with the help of an ESP8266 WiFi module.

app_live_controlThe camera slider is a two-axis ordeal, with one axis sliding the camera along two solid rails, and the other panning the camera. The circuit board was milled by the guys and includes an ATMega328 controlling two Pololu stepper drivers. An ESP8266 is thrown into the mix, and is easily implemented on the device; it’s just an MAX232 chip listening to the Tx and Rx lines of the WiFi module and translating that to something the ATMega can understand.

By far the most impressive part of this project is the iPad app. This app can be controlled ‘live’ and the movements can be recorded for later playback. Alternatively, the app has a simple scripting function that performs various actions such as movement and rotation over time. The second mode is great for time lapse shots. Because this camera slider uses websockets for the connection, the guys should also be able to write a web client for the slider, just in case they wanted the ultimate webcam.

You can check out [Daniel] and [Tobias]’ demo reel for their camera slider below.

Continue reading “The iPad Controlled Camera Slider”

How to Upgrade a Chinese CNC Machine

Looking to add a small CNC machine to your garage or hackerspace’s arsenal of tools? Like any tools — China has you covered for the cheap options — but the question is, is it worth it? Typically it depends on the tool, but when you can upgrade your 3040 CNC router to use USB instead of a parallel port with the TinyG motion controller… most definitely!

The 3040 or 3020 CNC router is a popular Chinese machine used by many hobbyists — and for good reason. A rigid all-aluminum frame, decent stepper motors and pretty good resolution? It’s not a bad deal for around $1000USD. We’ve covered it many times before. Problem is, the electronics are a bit out-dated. Particularly in the fact that it uses Mach3 with a parallel port… Come on, who has a parallel port these days?

[John Lauer] set out to fix this. The TinyG is a motor controller we’ve covered a few times before as well — it was just waiting to be fitted into a 3040 CNC in order to run a better control system, like ChiliPeppr!

Continue reading “How to Upgrade a Chinese CNC Machine”

3D Objects From a Laser Cutter

Actors want to be singers and singers want to be actors. The hacker equivalent to this might be that 3D printers want to be laser cutters or CNC machines and laser cutters want to be 3D printers. When [Kurt] and [Lawrence] discovered their tech shop acquired a 120 Watt Epilog Fusion laser cutter, they started thinking if they could coax it into cutting out 3D shapes. That question led them to several experiments that were ultimately successful.

The idea was to cut away material, rotate the work piece, and cut some more in a similar way to how some laser cutters handle engraving cylindrical objects. Unlike 3D printing which is additive, this process is subtractive like a traditional machining process. The developers used wood as the base material. They wanted to use acrylic, but found that the cut away pieces tended to stick, so they continued using wood. However, the wood tends to char as it is cut.

In the end, they not only had to build special jigs and electronics, they also had to port some third party control software to solve some issues with the Epilog Fusion cutter’s built in software. The final refinement was to use the laser’s raster mode to draw surface detail on the part.

The results were better than you’d expect, and fairly distinctive looking. We’ve covered a similar process that made small chess pieces out of acrylic using two passes. This seems like a natural extension of the same idea. Of course, there are very complicated industrial machines that laser cut in three dimensions (see the video below), but they are not in the same category as the typical desktop cutter.

Continue reading “3D Objects From a Laser Cutter”

Update: What You See Is What You Laser Cut

If there’s one thing about laser cutters that makes them a little difficult to use, it’s the fact that it’s hard for a person to interact with them one-on-one without a clunky computer in the middle of everything. Granted, that laser is a little dangerous, but it would be nice if there was a way to use a laser cutter without having to deal with a computer. Luckily, [Anirudh] and team have been working on solving this problem, creating a laser cutter that can interact directly with its user.

The laser cutter is tied to a visual system which watches for a number of cues. As we’ve featured before, this particular laser cutter can “see” pen strokes and will instruct the laser cutter to cut along the pen strokes (once all fingers are away from the cutting area, of course). The update to this system is that now, a user can import a drawing from a smartphone and manipulate it with a set of physical tokens that the camera can watch. One token changes the location of the cut, and the other changes the scale. This extends the functionality of the laser cutter from simply cutting at the location of pen strokes to being able to cut around any user-manipulated image without interacting directly with a computer. Be sure to check out the video after the break for a demonstration of how this works.

Continue reading “Update: What You See Is What You Laser Cut”

Hot-Wire CNC Foam Cutter From E Waste

A couple of old DVD ROM drives and a compact photo printer is fairly standard fare at the thrift store, but what do you do with them? Hack them up to make a CNC foam cutter of course!

[Jonah] started with a couple LITE-ON brand DVD RW drives, which use stepper motors instead of plain old DC motors. This is a huge score since steppers make accurate positioning possible. With the internal frames removed, threaded rod and nuts were used to hold the two units parallel to each other forming the Z axis.

The feed mechanism from a Canon compact photo printer was then bolted onto the bottom to form the Y axis. Add a bit of nichrome wire for the cutting element (this can be found in old hair dryers) onto where the laser assembly of the DVD rom once lived, and you have the mechanics done.

Control is handled by an Arduino and some easy-driver modules to interface with the steppers. G-Code is generated by CamBam, which handles various cad files, or has its own geometry editor.

This is a fantastic way to get your feet wet in several ways; Cracking things open to harvest parts, driving steppers with simple micocontrollers, modeling and generating g-code, etc. The one issue we see with this build is a chicken-or-egg problem since you need to have a cube of foam cut down to somewhat strict dimensions before it will fit in this cutter. But we suppose that is really just an iterative design problem.

Continue reading “Hot-Wire CNC Foam Cutter From E Waste”

Build a Baby Plasma Cutter–Right Now!

What hacker doesn’t want a plasma cutter? Even if you aren’t MacGyver, you can probably build this one in a few minutes using things you have on hand. The catch? You probably can’t cut anything more than tin foil with it, and it is probably more a carbon-air arc gouger (which uses plasma) than a true plasma cutter. Still, as [Little Shop of Physics] shows on the video, it does a fine job of slicing right through foil.

If you are like us, you are back now after getting four 9V batteries, some tin foil, a pencil lead, and some clip leads and trying it. If you have more self-restraint than we do, you might want to think about what you are going to put the tin foil over. In the video, they used a laundry basket and a rubber band, but anything that keeps the foil suspended would do the trick.

Although it isn’t really a practical plasma cutter, we were thinking about strapping something like this to a 3D printer and cutting foil stencils. The jagged edges on the video are, hopefully, more from being operated by hand and less from the jagged mini-lightning bolt vaporizing the foil.

Continue reading “Build a Baby Plasma Cutter–Right Now!”

DIY Punch Card System Despite Hanging Chads

Sometimes you just have parts lying around and want to make something out of them. [Tymkrs] had a robot paper cutter, so naturally they made punch cards. But then, of course, they needed a punch card reader, so they made one of those too. All with stuff lying around the shop.

The Silhouette Portrait paper cutter is meant for scrapbooking, but what evokes memories of the past more than punchcards? To cut out their data, rather than cute kittens or flowers, they wrote some custom code to turn ASCII characters into rows of dots. And the cards are done — you just have to clean up the holes that didn’t completely cut. These are infamously known as hanging chads.

The reader is made up of a block of wood, with a gap for the cards and perpendicular holes drilled for LEDs and photoresistors. This is cabled to a Propeller dev board with some simple firmware. We would have used photodiodes or phototransistors, because that’s what’s in our junk box (and because they have faster reaction time), but when you’ve got lemons, make lemonade.

OK, now that you’ve got a punch card reader and writer, what do you do with it? Password storage comes to mind.

Continue reading “DIY Punch Card System Despite Hanging Chads”