Towards A Tiny Pick And Place Head

One of the projects that has been on [Peter Jansen]’s build list for a long time – besides a fully functioning tricorder, of course – is a pick and place machine. It’s a project born out of necessity; each tricorder takes four days to assemble, and assembling the motherboard takes eight hours with a soldering iron and hot air gun. The pick and place machine isn’t complete yet, but one vital component – the vacuum head for picking up components – is getting there with the help of some odd components.

A few months ago, [Peter] saw a post on Hackaday about repurposing a tiny piezo micro blower for use as an extremely small vacuum pen. The original build was extremely simple – just a few pieces of foam board and a power supply, but the potential was there. A tiny electric air pump that’s able to pick up large chips and modules along with tiny resistors without having to run a hose through the mechanics of a CNC gantry is a godsend.

[Peter] got his hands on one of these micro blowers and started work on a proper tool head for a pick and place machine. A port on the micro blower was covered so it would suck instead of blow, the vacuum port was threaded through a stepper motor with a hollow shaft, and a fine tip was attached to the end.

What can this vacuum head pick up? 0604 size resistors aren’t a problem, but larger modules are simply too heavy. It looks like this micro blower would only be able to pick up small components. There are other options, though: [Grant Trebbin] has had some luck with a larger pump from Sparkfun, but this requires a vacuum line to run through a CNC gantry. There’s still some work to do before a small vacuum head shows up on the tool head of a pick and place machine, but given how long it takes [Peter] to put together a single tricorder, it’s well worth investing the time to do this right.

Semi-Auto PCB Drill Press Makes Drilling Semi-Painless

DIY PCBs are the fastest and cheapest way to iteratively prototype circuits, and there’s a lot of great tricks to get the copper layer just the way you want it. But if you’re using through-hole parts, you eventually have to suffer the tedium of drilling a potentially large number of precisely aligned holes. Until now. [Acidbourbon] has built up a very nice semi-automatic PCB drill machine.

Semi-automatic? The CNC machine (with PC-side software) parses the drill file that most PCB design software spits out, and moves an X-Y table under your drill press to just the right spots. The user manually drills the hole and hits enter, and the table scoots off to the next drilling location. All of this is tied together with a simple calibration procedure that figures out where you’ve got the board using two reference drill locations; you initially jog the platform to two reference drill holes, and you’re set.

The CNC conversion of a relatively cheap X-Y table is nicely documented, and the on-board touchscreen and USB interface seem to make driving the machine around painless. Or at least a lot less painful than aligning up and drilling all the holes the old-fashioned way. Everything is open-source, so head on over and check it out.  (And while you’re there, don’t miss [Acidbourbon]’s tips and tricks for making PCBs using the toner transfer method.)

Seeing this machine in action, we can’t wait for the fully automatic version.

Continue reading “Semi-Auto PCB Drill Press Makes Drilling Semi-Painless”

CNC Plotter Uses Only the Good DVD Drive Parts

It wasn’t that long ago that wanting to own your own 3D printer meant learning as much as you possibly could about CNC machines and then boostrapping your first printer. Now you can borrow time on one pretty easily, and somewhat affordably buy your own. If you take either of these routes you don’t need to know much about CNC, but why not use the tool to learn? This is what [Wootin24] did when building a 3D printed plotter with DVD drive parts.

Plotters made from scrapped floppy, optical drives, and printers are a popular hand, and well worth a weekend of your time. This one, however, is quite a bit different. [Wootin24] used the drives to source just the important parts for CNC precision: the rods, motors, motors, and bearings. The difference is that he designed and 3D printed his own mounting brackets rather than making do with what the optical drive parts are attached to.

This guide focuses on the gantries and the mechanics that drive them… it’s up to you to supply the motor drivers and electrical side of things. He suggests RAMPS but admins he used a simple motor driver and Arduino since they were handy.

First CNC Project Results in Coffee Table of Catan

[Christian Finklea] was inspired by a glow in the dark table, and decided to try his hand at making his own… and it’s absolutely fantastic.

He designed the table using SketchUp Make, and overlaid the continents of our planet on a grid of hexagons — Though it looks like he left Antarctica out of the mix — poor Antarctica! Why hexagons you might ask? Well, his CNC machine isn’t that big, so he had to choose a smaller work piece size in order to make the table. Kind of gives off a Settlers of Catan vibe too…

Once he had all the intricate hexagons milled out, he began assembling the table. Lots of wood glue later the table started looking like a table. Now here’s the fun part — making it glow.

Using what looks like a kind of glow-in-the-dark epoxy, [Christian] filled in all of the country cutouts and waited for it to cure. Bit of sanding later, some more lacquer, and boom — he has an awesome coffee table.

Now if only he had stuck some LEDs in there too like one of these RGB coffee tables we’ve seen — Then you could also play Risk anytime!

CoreXY For a Dry Erase Plotter

After years of playing DnD, it’s finally [Mike]’s turn to be a DM. Of course he can’t draw maps with his hands, so that means building a tabletop plotter.

[Mike] is basing his tabletop game plotter on the Makelangelo, a polar plotter that draws images on a vertical platform with the help of two motors in the corner. This is a tabletop plotter, so the usual vertical arrangement wouldn’t work, but there are some projects out there that use the CoreXY system for a similar horizontal build.

The tabletop CoreXY system is built from rigid aluminum yard sticks, 3D printed parts, two very cheap stepper motors, an Arduino, and a whole lot of string. It’s a very inexpensive build and because [Mike] is using metal rulers for the frame, it’s also very low profile – a nice advantage for table top sessions.

So far, [Mike] has the axes of the plotter moving, with a servo and pen mechanism next on the build plan. He has a few neat ideas for how to plot these dungeon maps by vectoring bitmap images and sending them to the Arduino, something we’ll probably see in a an upcoming build log.

You can check out a video of [Mike]’s build below.

Continue reading “CoreXY For a Dry Erase Plotter”

Atari 2600 Controller Now Controls CNC Plasma Cutter

When using any CNC machine the system has to understand where the part to be machined is physically located. This is most commonly done by jogging the tool to a position relative to the part and then indicating to the controller that the tool is indeed at that position. Hobby CNC enthusiasts [Jeremy] and [Yakob] wanted an easy, convenient (and even fun) way to zero their plasma cutter. They decided to make a wireless jog pendant capable of moving and zeroing their machine….. and it’s built into a retro game controller!

The housing is a wireless Atari 2600 controller. Most of the innards were taken out and replaced with a BlueFruit EZ-Key module that takes input signals from the stock joystick and button switches and, in turn, emulates a Bluetooth keyboard signal that is understood by a PC. Most PC-based CNC Control Software’s have keyboard shortcuts for certain functions. This project takes advantage by using those available keyboard shortcuts by mapping individual pin inputs to specific keyboard key presses.

The X and Y axes are controlled by pushing the joystick in the appropriate direction. Pressing the ‘fire’ button zeros the axis. Even though the remote is working now, these two guys want to add a rotary encoder so that they can make minor Z axis height adjustments on the fly since sometimes the metal they are plasma cutting isn’t completely flat.

If you’re interested in making CNC Pendants out of old tech, check out this once-was TV remote.

Bipolar bot for drawing spirals

[Bart Dring] is well known around these parts for Makerslide, the buildlog.net laser cutter, and a collaboration with Inventables for the Carvey CNC machine. They’re all popular projects and all very useful. This one, not so much. It’s a bipolar bot that doesn’t take itself too seriously, and this year’s build for [Bart]’s usual gonzo CNC machine for ORD Camp.

The Bipolar Bot – yes, that’s its name – is pretty much a SCARA bot. There are two NEMA 14 steppers in the joint of two arms, each of which are bolted to a bearing on a base plate with the other end holding a pen. That’s it as far as the mechanics go, but the software is extremely interesting.

The steppers are driven by an Arduino with the help of a tool that converts Cartesian Gcode to the bipolar Gcode the machine requires. There’s a bit of math involved, but nothing of note if you can code some trig functions

Right now the bipolar bot is busy drawing stuff that looks like it came right off a spirograph. You can see a video of that below.

Continue reading “Bipolar bot for drawing spirals”