A Vintage Single Transistor LED Blinker

[Eric Wasatonic] had a box of SWB2433 transistors that he had very little information about. In order to discover their properties, he fired up his curve tracer to compare these transistors with more common ones. He noticed the SWB2433 exhibited negative resistance while the similar curves of a 2n3904 didn’t. Then he reverse-biased the two transistors: the negative resistance region on the 2n3904 was less than that of the SWB2433, but it was there, and a 2n2222 had a bigger region. Using this knowledge, he developed a relaxation oscillator circuit which uses a negatively biased transistor.

Using one transistor, one resistor and one capacitor, he describes the circuit and how the components affect the frequency of the sawtooth wave the oscillator creates. [Eric] uses the oscillator to build a simple LED blinker and shows what happens when he changes the transistor and adjusts the voltage or resistance. He also shows the circuit as a tone generator and adjusts the tone by replacing the resistor with a potentiometer. And then, for fun, he modifies the circuit to show the oscillator as an AM transmitter. Check out his video after the break.

Continue reading “A Vintage Single Transistor LED Blinker”

Espressif Releases ESP8266-Killer!

It’s no secret that we love the ESP8266 chip, and the community of hackers that have contributed to making it useful. We often joke about this or that new WiFi-enabler being an ESP8266 killer, but so far none have stepped up. Here we go again!

Espressif has released a chip that’s going to be an ESP8266 killer, and no, it’s not the ESP32. The ESP8285 went into mass production in March, and should start to appear in the usual outlets fairly soon.

What makes it an ESP8266 killer? It’s an ESP8266, but with the flash memory onboard. Nothing more, but also nothing less. What does this mean? Tiny, tiny designs are possible. And, if the street price ends up being right, there’s no reason you wouldn’t opt for built-in flash. (Unless you were planning on doing some ROM hacking.)

Continue reading “Espressif Releases ESP8266-Killer!”

How Does a Buck Converter Work Anyway?

[Great Scott] should win an award for quickest explanation of a buck converter. Clocking in at five and a half minutes, the video clearly shows the operating principles behind the device.

It starts off with the question, what should you do if you want to drop a voltage? Many of us know that we can dim and brighten an LED using the PWM on an Arduino, but a closer inspection with an oscilloscope still shows 5V peaks that would be dangerous to a 3.3V circuit. He then adds an inductor and diode, this keeps the current from dropping too fast, but the PWM just isn’t switching fast enough to keep the coil energized.

A small modification to the Arduino’s code, and the PWM frequency is now in the kHz range. The voltage looks pretty good on the oscilloscope, but a filter cap gets it to look nice and smooth. Lastly, he shows how when the load changes the voltage out looks different. To fix this a voltage divider feeds back the information to the Arduino, letting it change the PWM duty to match the load.

In the last minute of the video he shows how to hook up off-the-shelf switching regulators, whose support components are now completely demystified as the basic principles are understood. Video after the break.

Continue reading “How Does a Buck Converter Work Anyway?”

Safely Creating A Li-Ion Pack From Phone Cells

[Glen], at Maker Space Newcastle Upon Tyne, is refreshingly honest. As he puts it, he’s too cheap to buy a proper battery.

He needed a 1AH battery pack to power his quadcopter controller and FPV headset, and since inadequate discharge warnings had led him to damage lithium polymer cells with these devices, he wanted his pack to use lithium-ion cells. His requirements were that the cells be as cheap, lightweight, and small as possible, so to satisfy them he turned to a stack of mobile phone cells. Nokia BL-4U cells could be had for under a pound ($1.46) including delivery, so they certainly satisfied his requirement for cheapness.

It might seem a simple procedure, to put together a battery pack, and in terms of physical wiring it certainly is. But lithium-ion cells are not simply connected together in the way dry cells are, to avoid a significant fire risk they need to have the voltage of each individual cell monitored with a special balanced charger. Thus each cell junction needs to be brought out to another connector to the charger.

[Glen]’s write-up takes the reader through all the requirements of safe lithium-ion pack construction and charging, and is a useful read for any lithium-ion newbies. If nothing else it serves as a useful reminder that mobile phone cells can be surprisingly cheap.

Lithium cells have captured our attention before here at Hackaday. Our recent Hackaday Dictionary piece provides a comprehensive primer, we’ve featured another multi-cell build, and an interesting app note from Maxim for a battery manager chip.

i2c Relay Expander Uses Nifty Card-Edge Connection

[Andrew Sowa] wanted to use an off-the-shelf relay board from Numato Labs. The board lacks a suitable computer interface, which meant that [Andrew] would have to build one, and its input connectors are screw terminals, which meant a lot of wiring. Undeterred, he created an i2c expansion board using an MCP23017 I/O port expander, and with a novel card-edge designed to mate with the screw terminals, solving both problems at once.
Continue reading “i2c Relay Expander Uses Nifty Card-Edge Connection”

Make a BLDC Motor From Scraps You Can Find In The Garage

Think you’ve got what it takes to build a homebrew brushless motor? As [JaycubL] shows us, it turns out that a bldc motor may be living in pieces right under your nose, in scraps that so many of us would otherwise toss aside. To get our heads turning, [JaycubL] takes us into the theory of brushless DC motors operate. He then builds a homebrew brushless motor using screws, a plastic container, a few bearings, a metal rod, some magnets, and a dab of epoxy. Finally, he gives it a whirl with an off-the-shelf motor controller.

This isn’t [JaycubL’s] first dive into homebrew brushless motors. For the curious, he’s also assembled a fully-functional brushless outrunner motor with a paint can housing.

Sure, understanding the principles is one thing, but being able to take the leap into the real world and find the functional beginnings of a motor from your scrap bin is an entirely different story! [JaycubL’s], dare we say, finesse of understanding the principles behind motor design makes us wonder: how many other functional higher-level electrical and mechanical components can we bootstrap from bitter scrap? To get you started, we’ll point you in the direction of this CNC router that’s just a few steps away from one trip to the hardware store.

Thanks for the tip, [John]!

Continue reading “Make a BLDC Motor From Scraps You Can Find In The Garage”