TFT LCDs Hit Warp Speed with Teensy 3.1

spi-speedup

[Paul Stoffregen], known as father of the Teensy, has leveraged the Teensy 3.1’s hardware to obtain some serious speed gains with SPI driven TFT LCDs. Low cost serial TFT LCDs have become commonplace these days. Many of us have used Adafruit’s TFT LCD library  to drive these displays on an Arduino. The Adafruit library gives us a simple API to work with these LCDs, and saves us from having to learn the intricacies of various driver chips.

[Paul] has turbocharged the library by using hardware available on Teensy 3.1’s 32 Freescale Kinetis K20 microcontroller. The first bump is raw speed. The Arduino’s ATmega328 can drive the SPI bus at 8MHz, while the Teensy’s Kinetis can ramp things up to 24MHz.

Speed isn’t everything though. [Paul] also used the Freescale’s 4 level FIFO to buffer transfers. By using a “Write first, then block until the FIFO isn’t full” algorithm, [Paul] ensured that new data always gets to the LCD as fast as possible.

Another huge bump was SPI chip select. The Kinetis can drive up to 5 SPI chip select pins from hardware. The ATmega328 doesn’t support chip selects. so they must be implemented with GPIO pins, which takes even more time.

The final result is rather impressive. Click past the break to see the ATmega based Arduno race against the Kinetis K20 powered Teensy 3.1.

Paul’s library is open source and available on Github.

[Read more...]

The Hackaday Antiduino Browser Plugin

ArduinoArduinoArduino

Hackaday – and the projects featured on Hackaday – get a lot of flak in the comments section simply for mentioning an Arduino. The Arduino complainers are, of course, completely wrong; everyone here is trying to make something, not make something in the most obscure possible way.

The Arduino is a legitimate tool, but still there are those among us who despise anything ending in ~duino. This browser plugin is for them. It’s a Chrome extension that selectively replaces or removes Arduino content from Hackaday depending on the user’s preference.

There are three settings to the plugin: See No Evil replaces images of Arduinos with serious business. Hear No Evil removes all occurrences of the word ‘Arduino’ and replaces them with something of your choosing. Speak No Evil removes all posts in the Arduino Hacks category.The last option also removes the ability to comment on any post in the Arduino Hacks category, so obviously the quality of the comments here will drastically increase by tomorrow.

You can grab the plugin on the gits. It’s Chrome only, but if someone wants to port it to Firefox, we’ll gladly put up another post.

There you go, Internet. You’re free now, and the biggest problem in your life has now been solved. Go give [SickSad] a virtual pat on the back, or tell him he could have done the same thing with a 555. Either of those are pretty much the same thing at this point.

Voice Controlled RGB LED Lamp

Voice Controlled Lamp

[Saurabh] wanted a quick project to demonstrate how easy it can be to build devices that are voice controlled. His latest Instructable does just that using an Arduino and Visual Basic .Net.

[Saurabh] decided to build a voice controlled lamp. He knew he wanted it to change colors as well as be energy-efficient. It also had to be easy to control. The obvious choice was to use an RGB LED. The LED on its own wouldn’t be very interesting. He needed something to diffuse the light, like a lampshade. [Saurabh] decided to start with an empty glass jar. He filled the jar with gel wax, which provides a nice surface to diffuse the light.

The RGB LED was mounted underneath the jar’s screw-on cover. [Saurabh] soldered a 220 ohm current limiting resistor to each of the three anodes of the LED. A hole was drilled in the cap so he’d have a place to run the wires. The LED was then hooked up to an Arduino Leonardo.

The Arduino sketch has several built-in functions to set all of the colors, and also fade. [Saurabh] then wrote a control interface using Visual Basic .Net. The interface allows you to directly manipulate the lamp, but it also has built-in voice recognition functionality. This allows [Saurabh] to use his voice to change the color of the lamp, turn it off, or initiate a fading routing. You can watch a video demonstration of the voice controls below. [Read more...]

LEGO and Arduino meet Han Solo

lego blaster gif

This full-size replica blaster from Star Wars, most iconically used by Han Solo and Princess Leia, has everything. Flashing LEDs, blaster noises, LEGO, and yes, even an Arduino. Not bad for [Baron von Brunk]‘s first project to use an Arduino!

The blaster was based on electronics and LEGO that were lying around and was intended for use for Star Wars Day 2014. (May the Fourth be with you.) “Lying around” in this sense might be a bit of an understatement for [Baron von Brunk], as the design of the blaster required the use of the LEGO Digital Designer and 400 blocks, some of which are quite rare.

The electronics for the project are tied to a moving trigger mechanism (also made from LEGO). The trigger mechanism hits a momentary pushbutton which tells the Arduino to activate the LEDs and a separate 555 timer and sound recording/playback device which handles the classic blaster sounds. The whole thing is powered by a 9V battery and housed in the front of the blaster, and all of the code (and the LEGO schematics) are available on the project’s site.

This is quite an impressive replica, and the craftsmanship that went into the build shows, especially in the LEGO parts. We think Han Solo would indeed be proud! If you’re ready to go even further with Star Wars and LEGO, you might want to check out this barrel organ that plays the Star Wars theme.

NFC Ring Lock Box

NFC Ring Lock Box

[Nairod785] wanted to build a lock box that would lock from the inside. He started with an inexpensive, plain wooden box. This kept the cost down but would also allow him to easily decorate the box later on using a wood burning tool.

To keep the box locked, he installed a simple latch on the inside. The latch is connected to a servo with string. When the servo rotates in one direction, it pulls the string and releases the latch. When the servo is rotated in the opposite direction, the latch closes and locks the box once again.

If you are going to have a locked box, then you are also going to need a key to open it. [Nairod785] used a ring with a built-in NFC tag, similar to the ring featured back in March. Inside of the box is a PN532 NFC module. The walls of the box were a little too thick for the reader to detect the ring, so [Nairod785] had to scratch the wall thickness down a bit. The NFC module is connected to an Arduino Nano. Communications are handled with I2C.

The NFC ring actually has two different NFC tags in it; one on each side. [Nairod785] had to program both of the tag ID’s into the Arduino to ensure that the ring would work no matter the orientation.

The system is powered by a small rechargeable 5V battery. [Nairod785] wired up a USB plug flush with the box wall so he can easily charge up the battery while the box is locked. It also allows him to reprogram the Arduino if he feels so inclined. There is also a power switch on the side to conserve energy.

The Berlin Cyberbeetle with Its Own TV

13_Cyberbeetle

The evolution of the mere beetle has transformed from organic matter into robotic gears, circuits, and wires. This Cyberbeetle project was born during an open culture hackathon in Berlin throughout a few months time period. The event was called Coding for Vinci and was held from April into July 2014. The project used an Arduino and combined openly licensed biology related pictures and sounds from the museums in the area in a fun and playful way.

[Tomi] based the design on a gorgeous Chalcosoma atlas beetle species which was found in insect box scans that were taken from a nearby museum. The cool thing about this project is that the Cyberbeetle that [Tomi] created has its own hi-tech insect box with various special features. For instance, when the box was rotated on its side, small doors were revealed that when opened unveiled a tiny home theater system with a hi-definition flat screen, audio system and infrared communication. Inside the horn of the Cyberbeetle was an infrared receiver, which allowed the creature to interface with its TV program when it started. Music videos as well excited the robotic insect.

The project was awarded the “Funniest hack” prize during the hackathon. And a video of it can be seen after the break:

[Read more...]

Arduino Gives Your Toilet Options

toilet water saver

With the severe drought going on in California with no end in sight, [TVMiller] decided he could put an Arduino and a toilet together to try and save at least a few gallons of water per day. The invention fills a toilet to the minimum level, saving around two gallons per day for the average “user”.

A typical toilet functions by using gravity and moving water to create a vacuum, sucking the waste down and out of the toilet. As long as there is nothing, uh, solid in the bowl, the toilet will be able to function on the reduced amount of water. The Arduino cuts the flow of water off before the toilet fills up the entire way.

In the event that anyone -ahem- needs the toilet’s full capacity, there is a button connected to the Arduino that fills the reservoir to capacity. [TVMiller] notes that if 1,825 hackers installed this device on their toilets, we could save a million gallons of water per year and be well on our way to saving the planet.

The project site is full of more information and puns for your viewing pleasure. We might suggest that the “2” button would be very easy to integrate with the toilet terror level indicator as well.

 

Follow

Get every new post delivered to your Inbox.

Join 92,138 other followers