Printable Keyboard Dock Puts Steam Deck To Work

Whether or not you’re into playing video games, you have to admit, that the Steam Deck is a pretty interesting piece of hardware. We’ve seen hackers jump through all sorts of uncomfortable hoops to get Linux running on their mobile devices in the past. The fact that you can pick up a fairly powerful x86 handheld computer right now for a reasonable amount of money is certainly exciting. The Linux steam deck gets even more enticing when you consider the software support it enjoys thanks to its large and vibrant user community. No wonder we’ve started to see them dotting the workbenches during Hackaday Supercon.

If there’s a downside, it’s that the Steam Deck was very clearly designed to be a handheld gaming system, not a portable computer. Sure you can plug in an external monitor and keyboard, but things can quickly become ungainly. This is why a printable dock from [a8ksh4] caught our eye.

It’s officially designed to let you mate the Steam Deck with the Corne keyboard, a split ergonomic design that’s graced these pages a few times in the past. [A8ksh4] has included links for all the hardware you’ll need outside the printed parts, from the hinges and keyboard PCBs, all the way to the keycaps and stainless steel screws. If you’re looking for a turnkey experience, this is it.

Continue reading “Printable Keyboard Dock Puts Steam Deck To Work”

Sundial Collection Is 2D Printed

We see a lot of clocks, and many of the better ones have some 3D printed elements to them. But [Carl Sabanski] shows us his kits for making sundials for either hemisphere using a conventional printer (you know, one that puts ink on paper), some styrofoam, and possibly some other materials like wire coat hangers, threaded rods, thumbtacks, glue, and different papers like transparencies or card stock.

In all, there are 21 different kinds of sundials. Some are pretty standard-looking fare, but there are others, like the pinwheel equatorial sundial or the cycloid polar sundial, which might be surprising. One even uses a CD as a kind of indicator.

Continue reading “Sundial Collection Is 2D Printed”

T-shirt folding robot

Laundry Bot Tackles The Tedium Of T-Shirt Folding

Roomba aside, domestic robots are still in search of the killer app they need to really take off. For the other kind of home automation to succeed, designers are going to have to find the most odious domestic task and make it go away at the push of the button. A T-shirt folding robot is probably a good first step.

First and foremost, hats off to [] for his copious documentation on this project. Not only are complete instructions for building the laundry bot listed, but there’s also a full use-case analysis and even a complete exploration of prior art in the space. [Stefano]’s exhaustive analysis led to a set of stepper-actuated panels, laser-cut from thin plywood, and arranged to make the series of folds needed to take a T-shirt from flat to folded in just a few seconds.

The video below shows the folder in action, and while it’s not especially fast right now, we’ll chalk that up to still being under development. We can see a few areas for improvement; making the panels from acrylic might make the folded shirt slide off the bot better, and pneumatic actuators might make for quicker movements and sharper folds. The challenges to real-world laundry folding are real, but this is a great start, and we’ll be on the lookout for improvements.

Continue reading “Laundry Bot Tackles The Tedium Of T-Shirt Folding”

Remoticon Video: Making Glowy Origami With Charlyn Gonda

Hacking is about pushing the envelope to discover new and clever ways to use things in ways their original designers never envisioned. [Charlyn Gonda]’s Hackaday Remoticon workshop “Making Glowly Origami” was exactly that; a combination of the art of origami with the one of LEDs. Check out the full course embedded below, and read on for a summary of what you’ll find. Continue reading “Remoticon Video: Making Glowy Origami With Charlyn Gonda”

Robot, Sudo Fold My Laundry

[Ty Palowski] doesn’t like folding his many shirts. He saw one of those boards on TV that supposedly simplifies folding, but it does require you to manually move the board. That just won’t do, so [Ty] motorized it to create a shirt folding robot.

The board idea is nothing new, and probably many people wouldn’t mind the simple operation required, but what else are you going to do with your 3D printer but make motor mounts for a shirt folding machine? The folding board is, of course, too big for 3D printing so he made that part out of cardboard at first and then what looks like foam board.

Continue reading “Robot, Sudo Fold My Laundry”

Turn Folds Into Flowers, But Not With Origami

It is said that you’re not a sysadmin if you haven’t warmed up a sandwich on server. OK, it’s not widely said; we made it up, and only said it once, coincidentally enough after heating up a sandwich on a server. But we stand by the central thesis: never let a good source of excess thermal energy go to waste.

[Joseph Marlin] is in the same camp, but it’s not lunch that he’s warming up. Instead, he’s using the heat generated by his Folding@Home rig to sprout seeds for beautiful tropical flowers. A native of South Africa Strelitzia reginae, better known as the striking blue and orange Bird of Paradise flower, prefers a temperature of at least 80° F (27° C) for the two months its seeds take to sprout. With all the extra CPU cycles on a spare laptop churning out warm air, [Joseph] rigged an incubator of sorts from a cardboard box. A 3D-printed scoop snaps over the fan output on the laptop and funnels warm air into the grow chamber. This keeps the interior temperature about 15 degrees above ambient, which should be good enough for the seeds to sprout. He says that elaborations for future versions could include an Arduino and a servo-controlled shutter to regulate the temperature, which seems like a good idea.

The Bird of Paradise is a spectacular flower, but if growing beautiful things isn’t your style, such a rig could easily sprout tomatoes or peppers or get onions off to a good start. No matter what you grow, you’ll need to basics of spinning up a Folding@Home rig, which is something we can help with, of course.

Tessellations And Modular Origami From Fabric And Paper

You may be familiar with origami, the Japanese art of paper folding, but chances are you haven’t come across smocking. This technique refers to the way fabric can be bunched by stitches, often made in a grid-like pattern to create more organized designs. Often, smocking is done with soft fabrics, and you may have even noticed it done on silk blouses and cotton shirts. There are plenty of examples of 18th and 19th century paintings depicting smocking in fashion.

[Madonna Yoder], an origami enthusiast, has documented her explorations in origami tessellations and smocking, including geometric shapes folded from a single sheet of paper and fabric smocked weave patterns. Apart from flat patterns, she has also made chain-linked smocked scarves stitched into a circular pattern and several examples of origami tessellations transferred to fabric smocking. Similar to folds in origami, the stitches used aren’t complex. Rather, the crease pattern defines the final shape once the stitches and fabric are properly gathered together.

Continue reading “Tessellations And Modular Origami From Fabric And Paper”