Hackaday Prize Entry: Hydroponic Garden Control

[Todd Christell] grows tomatoes in hydroponic buckets in his backyard, and recently he suffered a crop loss when a mechanical timer failed to dispense the nutrient flow as directed. He decided the solution was to add a sensor array to his home network.

[Todd]’s home automation setup runs on a Raspberry Pi loaded with Jessie OS and Node-Red, with Mosquitto as his MQTT message broker. With a sensor network in place, [Todd] would get updates on his phone alerting him if there was a problem with the pumps or if the nutrient bath was getting too low.

The proposed hydroponic setup would consist of an ESP8266-12 equipped with a DS18B20 waterproof temperature sensor, a reed sensor detecting nutrient levels, and a relay board triggering one pump to fill the grow buckets from the main sump and another to top off the sump with the solution from a reserve tank. One early problem he encountered was the electric fence (pictured above) that he employs to keep squirrels away from his tomatoes, interfered with the ESP8266’s signal.

Build Your Own Hydroponic Wheel

Hydroponics is an effective way of growing plants indoors through the use of water medium and artificial lighting. It often involves having a system to raise and lower the water level around the plants to let the roots breathe, however this can require some non-trivial plumbing. [Peter] wanted to instead explore the realm of wheel hydroponics to grow some ingredients for salad.

The idea is to have pods mounted on a rotating assembly, similar to the carriages on a Ferris Wheel. By rotating the wheel slowly, each pod spends a certain amount of time submerged, and a certain amount of time in free air. This allows the water level to remain constant and only the pods need to move.

The tank for the build is a simple plastic storage bin from a local hardware store, with the wheel assembled from various odds and ends and laser cut components, making this a build very possible for those with access to a hackerspace. A stepper motor provides the motive power, with the assembly completing approximately one rotation per hour.

[Peter] has run the device for several months now, noting that there are issues with certain plants maintaining their hold to the wheel, as well as algae growth in the water medium. There’s room for development but overall, it’s a great build and we hope [Peter] will be serving up some delicious fresh salads soon.

For another take, perhaps you’d like your hydroponics solar powered?

[Thanks Nils!]

Hackaday Prize Entry: Modular Rail Lighting

When operating any kind of hydroponic farming, there are a number of lighting solutions — few of them inexpensive. Originally looking for an alternative to the lighting of IKEA’s expensive hydroponics system, [Professor Fartsparkle] and their colleague prototyped a rail system that allows clip-on LED boards for variable lighting options.

Taking inspiration from wire and track lighting systems, the key was the 5mm fuse holders mounted on the bottom of the LED boards. Snipping off their stopping clip makes them easy to install and remove from the mounting rails. The rails themselves double as power conduits for the LED boards, but keeping them out of the way is easily done with the variety of 3D printed hangers [Professor Fartsparkle] has devised. Lighting is controlled by a potentiometer on the power injection board, as well as any home automation control via an ESP8266.

[Professor Fartsparkle] asserts that the boards can be slid along the rails without any noticeable flickering, but they do suffer from heat dissipation issues. That aside, the prototype works well enough that the 3W LEDs can be run at half power.

This is an ingenious — and cheap — workaround for when sunlight isn’t an option, but you are still looking for a solution capable of automation.

DIY Plant LED Light Prototype Lights Up The Winter

With winter on the way, our thoughts turn to indoor hacks. And what could be better in the cold winter than fresh veggies? This can be done by replacing the sun with an LED light, and [Margaret Johnson], aka [Bitknitting] has been working on building her own LED plant light.

She’s using a combination of red and blue LEDs that produce the ratio of light frequencies that plants thrive on, and has been experimenting with how bright to make them and how long to run them. This combination of factors determines how much light the plants get every day, called the Daily Light Integral, or DLI, and has a huge effect on how well the plants grow.

Her latest prototype uses nine red and two blue 3 Watt LEDs which run for about twenty hours a day. These lights shine onto the growing area, a bucket filled with nutrient solution. [Margaret] has done an excellent job of outlining why and how she made the choices she did and providing lots of links to more information for the home grower. It’s a great place to start for anyone looking to get something growing indoors in the depths of winter.

Hackaday Prize Entry: Automated Hydroponics

This team project for the Hackaday Prize is a solution to a rather important problem. Imagine growing plants for use as biomarkers for pollution. It’s a great idea, but how do you grow the plants in the first place? This team is building a space-saving hydroponic system that packs the most green into the least amount of space. It’s simple, and can be built almost entirely with parts from the local home supply store.

The design of this hydroponic system is based on a few PVC pipes, arranged vertically, joined together with a few 90 degree bends. In each course of pipe, a few holes are drilled to accept a plastic cup. This cup is filled with some sort of growing medium, and the Genuino-based controller takes care of everything else. Watering the plants, turning the lights on and off, and recording the nutrient concentration of the water is all possible with a simple microcontroller.

Right now the team has a huge stack of perforated PVC pipe and a Genuino-based brain box that takes care of everything plants need. It’s going to take a bit of time for the plants to grow, but this is still one of the most compact hydroponic systems we’ve seen.

You can check out a video of the entire setup below.

Continue reading “Hackaday Prize Entry: Automated Hydroponics”

Solar Powered Hydroponics

[Dan Bowen] describes the construction of a backyard hydroponics set-up in an angry third person tirade. While his friends assume more nefarious, breaking, and bad purposes behind [Dan]’s interest in hydroponics; he’d just like some herbs to mix into the occasional pasta sauce.

Feel particularly inspired one day after work, he stopped by the local hardware store and hydroponics supply. He purchases some PVC piping, hoses, fittings, pumps, accessories, and most importantly, a deck box to hide all the ugly stuff from his wife.

The design is pretty neat. He has an open vertical spot that gets a lot of light on his fence. So he placed three lengths of PVC on a slant. This way the water flows quickly and aerates as it goes. The top of the pipes have holes cut in them to accept net baskets.

The deck box contains a practically industrial array of sensors and equipment. The standard procedure for small-scale hydroponics is just to throw the water out on your garden and replace the nutrient solution every week or so. The hacker’s solution is to make a rubbermaid tote bristle with more sensors than the ISS.

We hope his hydroponics set-up approaches Hanging Gardens of Babylon soon.

Lettuce For Life!

If you take a head of romaine lettuce and eat all but the bottom 25mm/1inch, then place the cut-off stem in a bowl of water and leave it in the sun, something surprising happens. The lettuce slowly regrows. Give it a few nutrients and pay close attention to optimum growing conditions, and it regrows rather well.

lettuce-for-life-hydroponic-systemThis phenomenon caught the attention of [Evandromiami], who developed a home-made deep water culture hydroponic system to optimise his lettuce yield. The lettuce grows atop a plastic bucket of water under full spectrum grow lights, while an Intel Curie based Arduino 101 monitors and regulates light levels, humidity, temperature, water level, and pH. The system communicates with him via Bluetooth to allow him to tweak settings as well as to give him the data he needs should any intervention be required. All the electronics are neatly contained inside a mains power strip, and the entire hydroponic lettuce farm lives inside a closet.

He does admit that he’s still refining the system to the point at which it delivers significant yields of edible lettuce, but it shows promise and he’s also experimenting with tomatoes.

Our community have a continuing fascination with hydroponic culture judging by the number of projects we’ve seen over the years. This isn’t the first salad system, and we’ve followed urban farming before, but it’s winter strawberries that really catch the attention.