A Wrist-Mounted Flamethrower? Sure, Why Not?

There are three types of booths at Maker Faire. The first is the strange corporate booth, like Pepsi ‘revolutionizing fluid intake’ or some such nonsense. That one had the longest line of any booth, in case you’re wondering. The second type of booth is the people you would expect to be there – Atmel, TI, and Makerbot all came out in full force.

The third type of booth were a little hard to find. They’re the ‘show and tell’ spirit of Maker Faire, and [Stephen Hawes] was one of the best. Why? Wrist-mounted flamethrower, that’s why.

The flamethrower is fueled with a propane bottle originally meant for a camping stove, with a microcontroller and pot setup taking care of the height of the flame. Buttons underneath [Stephen]’s thumb takes care of the propane flow and tazer-based ignitor. The wrist measurement sensor can rescale to adjust the height of the flame to how far the wearer can move their wrist.

All in all, a great project for the Faire, although we did feel a little sorry for the NYC fire marshal that was assigned to [Stephen] for the entire faire. As an aside, we’re applauding [Stephen] for not referencing whatever comic book character has fire shooting out of his hand.

Apollo, the Everything Board

The best projects have a great story behind them, and the Apollo from Carbon Origins is no exception. A few years ago, the people at Carbon Origins were in school, working on a high power rocketry project.

Rocketry, of course, requires a ton of sensors in a very small and light package. The team built the precursor to Apollo, a board with a 9-axis IMU, GPS, temperature, pressure, humidity, light (UV and IR) sensors, WiFi, Bluetooth, SD card logging, a microphone, an OLED, and a trackball. This board understandably turned out to be really cool, and now it’s become the main focus of Carbon Origins.

There are more than a few ways to put together an ARM board with a bunch of sensors, and the Apollo is extremely well designed; all the LEDs are on PWM pins, as they should be, and there was a significant amount of time spent with thermal design. See that plated edge on the board? That’s for keeping the sensors cool.

The Apollo will eventually make its way to one of the crowdfunding sites, but we have no idea when that will happen. Carbon Origins is presenting at CES at the beginning of the year, so it’ll probably hit the Internet sometime around the beginning of next year. The retail price is expected to be somewhere around $200 – a little expensive, but not for what you’re getting.

Pick and Place Machines at Maker Faire

A few years ago, every booth at a Maker Faire had a 3D printer. It didn’t matter if 3D printing was only tangental to the business, or even if the printer worked. 3D printers have finally jumped the shark, and there’s going to be an awesome t-shirt to reflect this fact. This year there weren’t many 3D printers, leaving us asking ourselves what the new hotness is.

Pick and place machines. We couldn’t find many at the faire, and only Carbide Labs’ Pick and Paste machine was working on picking up small resistors and LEDs the entire faire. Carbide’s Pick and Paste machine is exactly what you would expect in a pick and place machine: it picks up components out of tapes and wells, orients them correctly, and plops them down on a board.

The killer feature for the Pick and Paste is its modular design. The toolhead is expandable, allowing anyone to add a second vacuum nozzle to double the rate parts are placed, or a solder paste dispenser. The guys didn’t have the paste dispenser working for the fair (leaded solder and kids don’t mix), but this machine is effectively a combination pick and place machine and solder paste dispenser, something that’s usually two machines on an assembly line.

Also at the faire was Tempo Automation. They’re in a pseudo-stealth mode right now, waiting until everything works perfectly until bringing their machine to the masses. It is, however, exceptionally fast and about a third of the price of a similar machine.

The only other pick and place machine at the faire was the Firepick Delta, one of the more popular projects on hackaday.io and one of fifty finalists for the Hackaday Prize. Unfortunately, the FirePick Delta was broken in shipping, and although [Neil] was sitting right next to the 3D printing guys, it would have taken all weekend to repair the machine.

43oh.com Wasn’t Next To The Texas Instruments Booth

In addition to all the cool boards and booster packs found at Texas Instruments’ booth at Maker Faire, the folks from 43oh.com made a showing, but not next to the TI booth. In fairness, the TI booth was right across from NASA. 43oh is cool, but not NASA cool.

[Eric], known on the 43oh forums as [spirilis] showed off a few of the neat bits and bobs developed on the forums including a lightning detector, a VFD clock, a robot, and a whole lot of blinky things. There was an astonishing array of projects and boards at the booth, covering everything from OLEDs to motor drivers.

43oh is an interesting community centered around TI’s microcontrollers, like the AVRfreaks forum built around Atmel’s offerings. 43oh has a very active forum, IRC, and a store featuring projects made by members. It was great to see these guys at the faire, and we wish more of the homespun unofficial communities would make more of a showing at cons in the future.

Sorry about the mic cutting out in the video above. There was a sea of spewing RF near the booth. If anyone has advice for a *digital* wireless mic setup, we’re all ears. This is the current rig.

Bluetooth Thingies at Maker Faire

In case you haven’t noticed, one of the more popular themes for new dev boards is Bluetooth. Slap a Bluetooth 4.0 module on a board, and you really have something: just about every phone out there has it, and the Low Energy label is great for battery-powered Internets of Things.

Most of these boards fall a little short. It’s one thing to throw a Bluetooth module on a board, but building the software to interact with this board is another matter entirely. Revealing Hour Creations is bucking that trend with their Tah board. Basically, it’s your standard Arduino compatible board with a btle module. What they’ve done is add the software for iOS and Android that makes building stuff easy.

Putting Bluetooth on a single board is one thing, but how about putting Bluetooth on everything. SAM Labs showed off their system of things at Maker Faire with LEDs, buttons, fans, motors, sensors, and just about every electrical component you can imagine.

All of these little boards come with a Bluetooth module and a battery. The software for the system is a graphical interface that allows you to draw virtual wires between everything. Connect a button to a LED in the software, and the LED will light up when the button is pressed. Move your mouse around the computer, and the button will turn on a motor when it’s pressed.

There are a few APIs that also come packaged into the programming environment – at the booth, you could open a fridge (filled with cool drinks that didn’t cost five dollars, a surprise for the faire) and it would post a tweet.

A Folding Laser Cutter

Want a laser cutter, but don’t have the space for one? How about a portable machine to engrave and cut wood and plastics? A folding laser cutter solves these problems, and that’s exactly what Red Ant Lasers was showing off last weekend at Maker Faire.

Inside the team’s Origami laser cutter is a 40 Watt CO2 tube, shooting its beam along an entirely enclosed beam path. The beam travels through the body of the machine, out into the folding arm of the machine, and down to whatever material you’ve placed the Origami on. It’s a 40 Watt laser so it will cut plywood and plastics, and as shown in the video above, does a fine job at engraving plywood.

This is a Class 4 laser device operating without any safety glass, but from the short time I spent with the Red Ant team, this is a reasonably safe device. You will need safety glasses if you’re within five feet, but after that, everything (according to OSHA, I think) is safe and not dangerous. Either way, it’s a tool just like a table saw. You don’t see commentors on the Internet complaining about how a spinning metal blade is dangerous all the time, do you?

The Red Ant guys are currently running a Kickstarter for their project, with a complete unit going for $4200. It’s pricier than a lot of other lasers, but not being constrained by the size of a laser cutters enclosure does open up a few interesting possibilities. You could conceivably cut a 4×8 sheet of plywood with this thing, and exceptionally large engravings start looking easy when you have a portable laser cutter.

Choreographed Iron Dust Dances to the Beat

Up on the second level of World Maker Faire’s main hall, one could hear Technotronic’s hit “Pump up the Jam” playing again and again. We were expecting breakdancing robots, but upon investigating, what we found was something even better. [David Durlach] was showing off his Choreographed Iron Dust, a 9 x 9 grid of magnets covered in iron filings. The filings swayed and danced to the beat of the music, at times appearing more like ferrofluid than a dry material. Two LED lights shined on the filings from an oblique angle. This added even more drama to the effect as the light played on the dancing spikes and ridges.

While chatting with [David] he told us that this wasn’t a new hack. Choreographed Iron Dust made its debut at the Boston Museum of Science back in 1989. Suddenly the 80’s music made more sense! The dust’s basic control system hasn’t changed very much since the 1980’s. The magnets are actually a stack of permanent and electromagnets. The permanent magnet provides enough force to hold the filings in place. The electromagnets are switched on to make the filings actually dance.

Since it was designed in 1989, there were no Arduinos available. This project is powered by the most hacker friendly interface of the era: the PC’s parallel port. As one might imagine, [David] has been having a hard time finding PC’s equipped with parallel ports these last few years.

[David] wasn’t just showing off iron dust. Having spent so much time painstakingly animating the iron filings for various customers, he knew there had to be a better way. He’s come up with ChoreoV, a system which can take recorded video, live performances, or even capture a section of a user’s screen. The captured data can then be translated directly into light or motion on an art piece.