Autodrop3D Continues Working At 3D Printer Automation

It is an unfortunate fact that 3D printers spend most of their time sitting idle, waiting for a human to remove finished prints or waiting for the next print to start. Hackers see such inefficiency as an open invitation to devise a better way, and we’ve seen several innovative ideas come across these pages. Some have since been abandoned, but others have kept going. At Maker Faire Bay Area 2019 we had the chance to revisit one presented as Autodrop3D.

We saw a much earlier iteration entered in our Hackaday Prize in 2017 and it was fascinating to see how the basic ideas have developed over the past few years. The most visible component of the system is their print ejection system, which has greatly improved in robustness. Because the mechanism modifies the print bed and adds significant mass, it is best suited to delta printers as their print bed remains static. The concept might be adaptable to printers where the print bed only has to move along Z axis, but for now the team stays focused on deltas. There were two implementations on display at Maker Faire: a large one built on a SeeMeCNC RostockMAX v4, and a small one built on a Monoprice Mini Delta.

The ejection system is novel enough by itself, but the hardware is only one part of the end-to-end Autodrop3D vision. Their full software pipeline starts with web-based CAD, to integrated slicing, to print queue management, before G-code is fed to a printer equipped with their ejection system.

We admire inventors who keep working away at turning their vision to reality, and we look forward to seeing what’s new the next time we meet this team. In the meantime, if you like the idea of an automated print ejection mechanism but want more cartoon style, look at this invention from MatterHackers.

Great Hacks At Our Maker Faire Bay Area Meetup; From Helmets And Goggles To Rovers And String

When Maker Faire Bay Area closed down early Saturday evening, the fun did not stop: there’s a strong pool of night owls among the maker demographic. When the gates close, the after-parties around San Mateo run late into the night, and Hackaday’s meetup is a strong favorite.

This year Hackaday and Tindie joined forces with Kickstarter and moved our combined event to B Street Station, a venue with more space for hacks than previous years. The drinks started flowing, great people started chatting, basked in an ever present glow of LEDs. A huge amount of awesome hardware showed up, so let’s take a look the demos and stunts that came out to play.

Continue reading “Great Hacks At Our Maker Faire Bay Area Meetup; From Helmets And Goggles To Rovers And String”

It Is ‘Quite Possible’ This Could Be The Last Bay Area Maker Faire

The Bay Area Maker Faire is this weekend, and this might be the last one. This report comes from the San Francisco Chronicle, and covers the continuing problems of funding and organizing what has been called The Greatest Show and Tell on Earth. According to Maker Media CEO Dale Dougherty, “it is ‘quite possible’ that the event could be the Bay Area’s last Maker Faire.”

Maker Faire has been drawing artists, craftspeople, inventors, and engineers for more than a decade. In one weekend you can see risque needlepoint, art cars meant for the playa, custom racing drones, science experiments, homebrew computers, gigantic 3D printers, interactive LED art, and so much more. This is a festival built around a subculture defined by an act of creation; if you do something with your hands, if you build something, or if you make something, Maker Faire has something for you. However you define it, this is the Maker Movement and since 2006, there has been a Maker Faire, a festival to celebrate these creators.

It’s sad to learn the future of this event is in peril. Let’s take a look at how we got here and what the future might hold.

Continue reading “It Is ‘Quite Possible’ This Could Be The Last Bay Area Maker Faire”

Hackaday Links Column Banner

Hackaday Links: May 12, 2019

The future of the musical instrument industry is in tiny, cheap, handheld synthesizers. They’re sold as ‘musical toys’. They bleep and bloop, and that’s about it. Korg may have just released the minimum viable product for this category, and thus the most popular product for this category. On the surface, the Korg Nu:Tekt doesn’t look like much, just a box with three knobs, a speaker, a (crappy) keyboard, and a few buttons. I/O includes MIDI in, Sync in and out, audio in, and headphones out. What’s inside is what counts. There’s a high-powered ARM core (STM32F446, a Cortex-M4 running at 180 MHz) and a ton of RAM. What’s the play here? It’s compatible with the Korg Prologue/Minilogue SDK, so you can put the same sounds from the flagship synthesizer on a tiny box that fits in your pocket. Things are starting to get weird, man. This is a toy, with the same sounds as the ‘pro’ level synth. Let it be known that the synth market is the most interesting segment of consumer electronics right now.

Bird, that ride share scooter startup, is now selling their scooters. It costs thirteen hundred dollars. Alternatively, you can pick some up for cheap at your city’s impound lot. Or for the low, low, price of free.

Razer, the company that makes garish computer peripherals aimed at ‘gamers’ and other people who are sucked deep into the existential turmoil of disempowerment, depression, and playing video games all day, are building a toaster. Gamers aren’t known for eating food that isn’t prepared by their mom, but the Razer consumer community has been clamoring for a professional gaming toaster since it was first teased on April Fool’s Day three years ago. You only eat so many cold Pop Tarts straight out of the box, I guess.

Everyone loves cupcake cars, and this year we’re in for a treat! We’re ringing the bell this weekend with the 6th annual Hackaday x Tindie meetup for the Bay Area Maker Faire. We got a few things going on here. Next Thursday we’ll be greeted with talks by The Only Makers That You Want To Meet. That’s HDDG, the monthly San Francisco meetup happening at the Supplyframe office, and it’s going to be packed to the gills this month. Don’t miss it. Next Saturday, we’re renting a bar close to the Faire. The 6th Annual Hackaday x Tindie MFBA Meetup w/ Kickstarter is usually at an Irish pub in San Mateo, but we’re getting a bigger venue this year. You’ll be able to move around in this venue.

Young Entrepreneurs Learn What Really Goes Into Making A Product

Just to be clear, the primary goal of the Papas Inventeurs (Inventor Dads) was to have the kids make something, have fun, and learn. In that light, they enjoyed a huge success. Four children designed, made, and sold laser-cut napkin rings from a booth at the Ottawa Maker Faire as a fun learning process (English translation, original link in French.) [pepelepoisson] documented the entire thing from beginning to end with plenty of photos. Things started at proof of concept, then design brainstorming, prototyping, manufacture, booth design, and finally sales. While adults were involved, every step was done by the kids themselves.

It all began when the kids were taken to a local fab lab at the École Polytechnique and made some laser-cut napkin holders from plywood for personal use. Later, they decided to design, manufacture, and sell them at the Ottawa Maker Faire. Money for the plywood came from piggy banks, 23 different designs made the cut, and a total of 103 rings were made. A display board and signs made from reclaimed materials rounded out the whole set.

In the end, about 20% of people who visited and showed interest made a purchase, and 60 of the 103 pieces were sold for a profit of $126. Of course, the whole process also involved about 100 hours of combined work between the kids and parents and use of a laser cutter, so it’s not exactly a recipe for easy wealth. But it was an incredibly enriching experience, at least figuratively, for everyone involved.

Possibly the biggest takeaway was the way manufacturing involved much more than just pressing “GO” on a laser cutter. Some pieces needed sanding after laser cutting, and each piece got two coats of varnish. If you missed it, [Bob Baddeley] showed how labor, and not materials, ends up being the most expensive part of a product.

Anderson’s Water Computer Spills The Analog Secrets Of Digital Logic

One of the first things we learn about computers is the concept of binary ones and zeroes. When we dig into implementation of digital logic, we start to learn about voltages, and currents, and other realities of our analog world. It is common for textbooks to use flow of water as an analogy to explain flow of electrons, and [Glen Anderson] turned that conceptual illustration into reality. He brought his water computer to the downtown Los Angeles Mini Maker Faire this past weekend to show people the analog realities behind their digital devices.

[Glen]’s demonstration is a translation of another textbook illustration: binary adder with two four-bit inputs and a five-bit output. Each transistor is built from a plastic jewel box whose lid has been glued to the bottom to form two chambers. A ping-pong ball sits in the upper chamber, a rubber flap resides in the lower chamber covering a hole, with a string connecting them so a floating ball would lift the flap and expose the hole.

Continue reading “Anderson’s Water Computer Spills The Analog Secrets Of Digital Logic”

Maker Faire NY: Infinite Autonomous 3D Printing

Although it’s not an idea that has yet trickled down to $200 printers drop-shipped from China, one of the most innovative ideas in the 3D printing world in the last few years is putting plastic down on a conveyor belt. Yes, MakerBot was doing it back in 2010, but we’re not going to talk about that. Printing on a conveyor belt instead of a static bed allows you to easily print multiples of an object autonomously, without any human interaction. If you’re really clever, you could rotate the hot end 45° and build a piece of plastic that is infinitely long, like the printer [Bill Steele] built, the Blackbelt, or ‘the CAD files might exist somewhere’ Printrbot infinite build volume printer.

At this year’s World Maker Faire, we didn’t see an infinite printer, but we did catch a glimpse of an idea that could reliably take 3D printers into production. It’s a Multiprinter Autonomous 3D Printer, designed and built by [Thomas Vagnini].

The idea of using 3D printers for production and manufacturing is a well-studied problem. Lulzbot has a heated room filled with printers they use to manufacture all their machines. Prusa’s manufacturing facility is similarly well-equipped. However, both of these setups require helper monkeys to remove a part from the bed and set the machine up for the next print.

Instead of a strictly manual process, [Thomas]’ machine uses a sort of cartridge-based system for the printing bed. The glass beds are stored in a cassette, and for the first print, the printer pulls a bed onto the heated build plate through a system of conveyors. When the print is finished, the part and the bed ar fed into a rotating cassette, where it can be removed by a tech, prepped for the next print, and placed back in the ‘bed feeder’. It’s a system that brings the manual intervention cycle time of a 3D printer down to zero. If you’re producing hundreds of parts, this will drastically speed up manufacturing.

While it is a relatively niche idea, this is a very well-designed machine. It’s all laser cut, uses core-XY mechanics, and with the right amount of tuning, it does exactly what it says it will do. It’s not for everybody, but that’s sort of the point of manufacturing parts on a 3D printer.