RC PVC bot

This hunk of PVC pipe is radio controlled. The wheels on the ends provide the locomotion, but it wouldn’t be going anywhere if it weren’t for that little tail strapped to the center of the tube.

When the motors are turning the body of the bot needs something to push against. In this case the tail hits the ground and keeps the chassis from spinning. We have seen attempts to go without a tail by using lopsided wheels to provide angular momentum, but this method is much more reliable.

The control for the bot is scrapped from a toy RC car. Once hooked up to the gearhead motors it’s ready to roll. The real difficulty of the build came in fitting everything into the pipe. A frame was built from a few disks used as mounting platforms which were separated by threaded rod. See it making its way around a gravel road in the clip after the break.

Continue reading “RC PVC bot”

Arduino rover doubles up on obstacle avoidance

[Eduard Ros] wrote in show off his first attempt at building an autonomous rover (translated). As with many of these projects, he started with the base of a remote control toy truck. This solves so many mechanical issues, like steering, locomotion, and power source.

He just needed a way to control the vehicle. The recent LayerOne badge hacks either did this through the wireless controller protocol or by adding an Arduino directly to the vehicle. [Eduard] chose the latter, and also included obstacle avoidance sensors in the process. We’ve seen quite a few that use these ultrasonic rangefinders. He decided to go a different route by adding two of them rather than scanning by mounting one on a servo motor.

The video after the break shows the vehicle successfully navigating through a tight space. This makes us wonder how much data can be processed from the stationary sensors? We’re not familiar with how wide the horizontal sensitivity is on the devices. If you have some insight, please share you knowledge in the comments section.

Continue reading “Arduino rover doubles up on obstacle avoidance”

Wi-Fli copter broken? Harvest the parts!

[Nick] was somewhat disappointed when the Wi-Fly helicopter he bought his son broke in less than 10 minutes. The main gear that turns the rotor split in half, rendering the copter WiFi enabled trash. [Nick] however decided that he didn’t want to waste an opportunity and harvested the receiver parts.  To test them out, he wired them up to the controller for an R/C truck. This gave him a WiFi truck with a nifty android interface. It actually works pretty well, as you can see in the video below. [Nick] points out that, while this works fine, he could ultimately repurpose this fancy little WIFI controlled 3v switch to whatever he wants. He mentions garage doors and lights (and terminators), so this might be an opportunistic way for him to get into some fun home automation.

Continue reading “Wi-Fli copter broken? Harvest the parts!”

Building your own eye in the sky

His goal of one post a week for a year has past, but [Dino] keeps bringing his skills to bear on new projects. This time around he’s adding a wireless camera to an RC helicopter.

These radio controlled fliers (there are cheap ones that use IR control which is much less reliable) can be found for around $30-60. [Dino] already had a wireless camera to use, but adding it and a 9V battery is just too much weight to lift. After some testing he established that 2oz of payload is the upper limit. He began removing parts from the helicopter to achieve enough savings to lift both the camera and its battery. Along the way he discovered that removing the weights from the fly bar added a lot of maneuverability at the cost of a small stability loss.

Check out his project video embedded after the break. It’s not anywhere near the results of professional multi-rotor camera mounts, but it is cheap and fun!

Continue reading “Building your own eye in the sky”

LayerOne badges stop bullets; drive away

We love badges. And we’ve really got to thank [Charliex] for taking the time to write a huge post about this year’s LayerOne badges, especially since they’ve got their backs up against the deadline for pulling everything together in time.

Here it is, the stock badge on the left, with an add-on shield on the right. Now the original intent was to make this badge the chassis of an RC car. [Charliex] chewed through his development time trying to source toy cars that could be gutted for parts that would mount easily on the badge. This looked promising at first, but turned out to be folly. Instead what we have here is an Arduino compatible board with an RF transmitter which can be cut off and used separately if you wish. Attendees will be able to use the badge to take control of the toy cars (cases of them have been shipped to the conference), with the option to use the USB functionality to facilitate automation.

So what about stopping bullets? There is a bug in the module [Charliex] used to export the board design from Eagle. They came back from the fab house as 0.125″ substrate. That’s pretty beefy!

The conference is this weekend… better get on that!

Universal 20 channel project controller from a Ps2 controller

So you’ve got a really cool project that requires a wireless controller and a ton of different channels. What are you going to do? Are you going to go pick up an expensive RC controller? Nah, you’re going to build your own. This project makes a generic 20 channel controller for your projects by stuffing an SMDuino and an XBee module inside a ps2 controller.  Unfortunately you lose the force feedback since you have to remove the motors to make space for the extra components and batteries. You do end up with a decently ergonomic and aesthetically pleasing controller though.

Continue reading “Universal 20 channel project controller from a Ps2 controller”

There’s more than meets the eye to this robot car

This is a robot that any Transformers enthusiast will love. Sure, the car looks just a bit boxy, but you’ll forget all about that when you see it unfold into a bipedal robot (translated). [Zak Sawa] is responsible for the creation. He pull off the build using 22 servo motors which let the car transform, and provide the somewhat awkward ability to walk. Fold it back up again and the car can drive away. In other words, here’s the Transformers toy that you always wanted; radio controled and it actually works!

This is the result of about four years of work. Apparently it’s the eighth iteration, and a note on the video after the break teases a ninth version on the way. It’s not just the robot that looks great, check out the carrying case that houses it for storage.

Continue reading “There’s more than meets the eye to this robot car”