Heated Build Chambers Don’t Have to be That Complex


Looking to improve the quality of your 3D prints? Worried about peeling, warping, and de-laminating layers? All you need is to do is make a heated build chamber!

The heated build chamber is one of the patents that the big 3D printer company owns (we won’t point any fingers), and that’s why you don’t see it as a feature on any of the “consumer” grade 3D printers. But that won’t stop people from making their own!

[Repkid] just finished a wiki page on this topic, and it’s a great way to build a heated chamber — if you have the space for it! He’s built a large wooden enclosure for his RepRap out of MDF sheets. Double-ply cardboard is used as thin insulation, although we imagine if you’re building something this large you might as well use some commercial insulation.

The chamber is heated by a blow dryer which is mounted off the back of the box, and the heat is controlled by changing the speed setting of the dryer. A laser cut vent allows for further adjustment. If you want to get really fancy, it would be very easy to install a thermostat PID controller that could regulate the temperature more accurately. To prevent overheating the electronics, all the control boards are also outside of the box.

[Read more...]

Ask Hackaday: Auto Bed Leveling And High Temperature Force Sensitive Resistors


[Johann] over on the RepRap wiki has an ingenious solution for making sure a borosilicate glass bed is completely level before printing anything on his Kossel printer: take three force sensitive resistors, put them under the build platform, and wire them in parallel, and connect them to a thermistor input on an electronics board. The calibration is simply a bit of code in the Marlin firmware that touches the nozzle to the bed until the thermistor input maxes out. When it does, the firmware knows the print head has zeroed out and can calculate the precise position and tilt of the bed.

Great, huh? A solution to bed leveling that doesn’t require a Z-probe, uses minimal (and cheap) hardware, and can be retrofitted into just about any existing printer. There’s a problem, though: these force sensitive resistors are only good to 70° C, making the whole setup unusable for anything with a heated bed. Your challenge: figure out a way to use this trick with a heated bed.

The force sensitive resistors used – here’s a link provided by [Johann] – have a maximum operating temperature of 70° C, while the bed temperature when printing with ABS is around 130° C. The FSRs are sensitive to temperature, as well, making this a very interesting problem.

Anyone with any ideas is welcome to comment here, on the RepRap forums, the IRC, or anywhere else. One idea includes putting an FSR in the x carriage, but we’re thinking some sort of specialized heat sink underneath the bed and on top of the FSRs would be a better solution.

Video of the auto bed leveling trick in action below.

[Read more...]

MRRF: ARM-Based CNC Controllers


8-bit microcontrollers are the standard for RepRap electronics, but eventually something better must come along. There has been a great deal of progress with ARM-based solutions, and of course a few of these made a showing at the Midwest RepRap Festival.

First up is [Mark Cooper], creator of Smoothieboard, the ultimate RepRap and CNC controller. It’s an ARM Cortex-M3 microcontroller with Ethernet, SD card, and up to five stepper drivers. It had a Kickstarter late last year and has just finished shipping all the rewards to the backers. In our video interview, [Mark] goes over the functions of Smoothieboard and tells us about some upcoming projects: the upcoming Smoothiepanel will feature a graphic LCD, SD card, rotary encoder and buttons, all controlled over USB by the Smoothieboard.

Next up is [Charles] with a whole bunch of CNC capes for the Beaglebone. By far the most impressive board was a huge I/O expander, motor driver, and everything controller for a Beaglebone featuring – get this – three parallel port interfaces. This was a one-off board costing thousands of dollars, but [Charles] did show off a few smaller and more practical boards for Beaglebone CNC control. Here’s a link to [Charles]‘ capes.

Videos below.

[Read more...]

MRRF: 3D Printed Resin Molds


Visiting the Midwest RepRap Festival, you will, of course, find a ton of 3D printed baubles and trinkets. A slightly more interesting find at this year’s MRRF was a lot of resin cast parts from [Mark VanDiepenbos]. He’s the guy behind the RotoMAAK, a spinny, ‘this was in the movie Contact‘-like device designed for spin casting with resins. At the festival, he’s showing off his latest project, 3D printed resin molds.

With the right mold, anyone with 2-part resins can replicate dozens of identical parts in an hour. The only problem is you need a mold to cast the parts. You could print a plastic part and make a silicone mold to cast your part. The much more clever solution would be to print the mold directly and fill it with resin.

[Mark] printed the two-part rabbit mold seen above out of ABS, filled it with urethane resin, and chucked it into his RotoMAAK spin casting machine. Six minutes later the part popped right out, and the mold was ready to make another rabbit.

Video below.

[Read more...]

Next Weekend: The Midwest Reprap Festival


Guess what next weekend is? It’s the Midwest Reprap Festival, in Goshen, Indiana. We’ll also be there keeping tabs on an absurd amount of new RepRaps and other 3D printers, new filaments, and distributing a ludicrous amount of Hackaday swag.

The highlights of the fest include the folks from Lulzbot and UltiMachine, [Prusa] showing off his i3, [Nick Seward] and the WallySimpson, and Lisa RepRaps, and hundreds of other RepRappers showing off their latest projects and printers.

Here’s the best part: it’s all free! It would be cool if you register before making the trip out, but any way you look at it, it’ll be an awesome weekend. It’s also the largest US gathering of 3D printer aficionados that isn’t on the east or west coast.

Solving Endstop Woes with a Simple Analog Filter


You know what’s cool? Using your engineering knowledge to solve problems that you have while building something. This is exactly what [Reinis] did when his 3D printer’s endstop wasn’t working.

Many of us automatically go to a microcontroller when we run into a problem with a sensor, but often a simple analog filter will do the trick. The endstop in [Reinis's] RepRap style 3D printer was giving off an unusual amount of noise when closed. When he hooked the endstop up to his oscilloscope, he was shocked to see how much noise there really was. In comes the low-pass filter. Unhappy with the response time of his low-pass filter, [Reinis] solved the problem using a pullup resistor. Two resistors and a capacitor was all that he needed to fix the problem. A great solution!

How have you used analog filters in your projects? Send us a tip and let us know!

The Stepper Driver Driver


The Stepstick and Pololu motor drivers are the heart of just about every Reprap electronics board, but they can go bad. The usual way of testing these things is to rig up a microcontroller on a breadboard, grab some cables, and wire something up. [Ken]‘s Easy Stepper Motor Controller is a much simpler solution to the problem of testing these drivers and could, with a bit of practice, be constructed on a single-sided homebrew PCB.

The Easy Stepper Motor Controller is a very simple board with connections to a motor, a power supply, and headers for a single Pololu or Stepstick motor driver. Two buttons and a pot control the rotation of the motor with the help of an ATtiny10, and jumpers for up to 16x microstepping are right there on the board.

There’s a video after the break showing what this stepper motor driver driver can do. It’s not much, but if you’re just testing a driver, it’s all you need.
[Read more...]