ProxyGambit Better Than ProxyHam; Takes Coffee Shop WiFi Global

Last weekend saw the announcement of ProxyHam, a device that anonymizes Internet activity by jumping on WiFi from public libraries and cafes over a 900MHz radio link. The project mysteriously disappeared and was stricken from the DEFCON schedule. No one knows why, but we spent some time speculating on that and on what hardware was actually used in the undisclosed build.

[Samy Kamkar] has just improved on the ProxyHam concept with ProxyGambit, a device that decouples your location from your IP address. But [Samy]’s build isn’t limited to ProxyHam’s claimed two-mile range. ProxyGambit can work anywhere on the planet over a 2G connection, or up to 10km (6 miles) away through a line-of-sight point to point wireless link.

The more GSM version of ProxyGambit uses two Adafruit FONA GSM breakout boards, two Arduinos, and two Raspberry Pis. The FONA board produces an outbound TCP connection over 2G. The Arduino serves as a serial connection over a reverse TCP tunnel and connects directly to the UART of a Raspberry Pi. The Pi is simply a network bridge at either end of the connection. By reverse tunneling a TCP connection through the ‘throwaway’ part of the build, [Samy] can get an Internet connection anywhere that has 2G service.

Although it’s just a proof of concept and should not be used by anyone who actually needs anonymity, the ProxyGambit does have a few advantages over the ProxyHam. It’s usable just about everywhere on the planet, and not just within two miles of the public WiFi access point. The source for ProxyGambit is also available, something that will never be said of the ProxyHam.

How To Build A ProxyHam Despite A Cancelled DEFCON Talk

A few days ago, [Ben Caudill] of Rhino Security was scheduled to give a talk at DEFCON. His project, ProxyHam, is designed for those seeking complete anonymity online. Because IP addresses can be tied to physical locations, any online activities can be tracked by oppressive regimes and three letter government agencies. Sometimes, this means doors are breached, and “seditious” journalists and activists are taken into custody.

With the ProxyHam, the link between IP addresses and physical locations is severed. ProxyHam uses a 900MHz radio link to bridge a WiFi network over miles. By hiding a ProxyHam base station in a space with public WiFi, anyone can have complete anonymity online; if the government comes to take you down, they’ll first have to stop at the local library, Starbucks, or wherever else has free WiFi.

[Ben Caudill] will not be giving a talk at DEFCON. It wasn’t the choice of DEFCON organizers to cancel the talk, and it wasn’t his employers – [Ben] founded and is principal consultant at Rhino Security. The talk has been killed, and no one knows why. Speculation ranges from National Security Letters to government gag orders to a far more pedestrian explanations like, “it doesn’t work as well as intended.” Nevertheless, the details of why the ProxyHam talk was cancelled will never be known. That doesn’t mean this knowledge is lost – you can build a ProxyHam with equipment purchased from Amazon, Newegg, or any one of a number of online retailers.

Continue reading “How To Build A ProxyHam Despite A Cancelled DEFCON Talk”

Remove Security Issues From Untrusted USB Connections

USB has become pretty “universal” nowadays, handling everything from high-speed data transfer to charging phones. There are even USB-powered lava lamps. This ubiquity doesn’t come without some costs, though. There have been many attacks on smartphones and computers which exploit the fact that USB is found pretty much everywhere, and if you want to avoid these attacks you can either give up using USB or do what [Jason] did and block the data lines on the USB port.

USB typically uses four wires: two for power and two for data. If you simply disconnect the data lines, though, the peripheral can’t negotiate with the host for more power and will limp along at 0.5 watts. However, [Jason] discovered that this negotiation takes place at a much lower data rate than normal data transfer, and was able to put a type of filter in between the host and the peripheral. The filter allows the low-frequency data transfer pass through but when a high-frequency data transfer occurs the filter blocks the communication.

[Jason] now has a device that can allow his peripherals to charge at the increased rate without having to worry about untrusted USB ports (at an airport or coffee shop, for example). This simple device could stop things like BadUSB from doing their dirty work, although whether or not it could stop something this nasty is still up in the air.

Hard Drive Rootkit Is Frighteningly Persistent

There are a lot of malware programs in the wild today, but luckily we have methods of detecting and removing them. Antivirus is an old standby, and if that fails you can always just reformat the hard drive and wipe it clean. That is unless the malware installs itself in your hard drive firmware. [MalwareTech] has written his own frightening proof of concept malware that does exactly this.

The core firmware rootkit needs to be very small in order to fit in the limited memory space on the hard drive’s memory chips. It’s only a few KB in size, but that doesn’t stop it from packing a punch. The rootkit can intercept any IO to and from the disk or the disk’s firmware. It uses this to its advantage by modifying data being sent back to the host computer. When the computer requests data from a sector on the disk, that data is first loaded into the disk’s cache. The firmware can modify the data sitting in the cache before notifying the host computer that the data is ready. This allows the firmware to trick the host system into executing arbitrary code.

[MalwareTech] uses this ability to load his own custom Windows XP bootkit called TinyXPB. All of this software is small enough to fit on the hard drive’s firmware. This means that traditional antivirus cannot detect its presence. If the owner of the system does get suspicious and completely reformats the hard drive, the malware will remain unharmed. The owner cannot even re-flash the firmware using traditional methods since the rootkit can detect this and save itself. The only way to properly re-flash the firmware would be to use an SPI programmer, which would be too technical for most users.

There are many more features and details to this project. If you are interested in malware, the PDF presentation is certainly worth a read. It goes much more in-depth into how the malware actually works and includes more details about how [MalwareTech] was able to actually reverse engineer the original firmware. If you’re worried about this malicious firmware getting out into the wild, [MalwareTech] assures us that he does not intend to release the actual code to the public.

Your Body is Your PIN with Bodyprint

[Christian Holz, Senaka Buthpitiya, and Marius Knaust] are researchers at Yahoo that have created a biometric solution for those unlucky folks that always forget their smartphone PIN codes. Bodyprint is an authentication system that allows a variety of body parts to act as the password.  These range from ears to fists.

Bodyprint uses the phone’s touchscreen as an image scanner. In order to do so, the researchers rooted an LG Nexus 5 and modified the touchscreen module. When a user sets up Bodyprint, they hold the desired body part to the touchscreen. A series of images are taken, sorted into various intensity categories. These files are stored in a database that identifies them by body type and associates the user authentication with them. When the user wants to access their phone, they simply hold that body part on the touchscreen, and Bodyprint will do the rest. There is an interesting security option: the two person authentication process. In the example shown in the video below, two users can restrict file access on a phone. Both users must be present to unlock the files on the phone.

How does Bodyprint compare to capacitive fingerprint scanners? These scanners are available on the more expensive phone models, as they require a higher touchscreen resolution and quality sensor. Bodyprint makes do with a much lower resolution of approximately 6dpi while increasing the false rejection rate to help compensate.  In a 12 participant study using the ears to authenticate, accuracy was over 99% with a false rejection rate of 1 out of 13.

Continue reading “Your Body is Your PIN with Bodyprint”

Hacking a Thin Client to Gain Root Access

[Roberto] recently discovered a clever way to gain root access to an HP t520 thin client computer. These computers run HP’s ThinPro operating system. The OS is based on Linux and is basically just a lightweight system designed to boot into a virtual desktop image loaded from a server. [Roberto’s] discovery works on systems that are running in “kiosk mode”.

The setup for the attack is incredibly simple. The attacker first stops the virtual desktop image from loading. Then, the connection settings are edited. The host field is filled with garbage, which will prevent the connection from actually working properly. The real trick is in the “command line arguments” field. The attacker simply needs to add the argument “&& xterm”. When the connection is launched, it will first fail and then launch the xterm program. This gives the attacker a command shell running under the context of whichever user the original software is running as.

The next step is to escalate privileges to root. [Roberto] discovered a special command that the default user can run as root using sudo. The “”hpobl” command launches the HP Easy Setup Wizard. Once the wizard is opened, the attacker clicks on the “Thank You” link, which will then load up the HP website in a version of Firefox. The final step is to edit Firefox’s default email program association to xterm. Now when the attacker visits an address like “mailto:test@test.com”, Firefox (running as root) launches xterm with full root privileges. These types of attacks are nothing new, but it’s interesting to see that they still persist even in newer software.

Race Conditions Exploit Granted Free Money on Web Services

[Josip] has been playing around with race conditions on web interfaces lately, finding vulnerabilities on both Facebook and Digital Ocean. A race condition can occur when a piece of software processes multiple threads using a shared resource.

For example, [Josip] discovered that he was able to manipulate page reviews using just a single Facebook account. Normally, a user is permitted to leave just one review for any given Facebook page. This prevents a single user from being able to skew the page’s overall ranking by making a bunch of positive or negative reviews. The trick to manipulating the system was to intercept the HTTP request that submitted the page review. The request was then replayed over and over in a very short amount of time.

Facebook’s servers ended up processing some of these requests simultaneously, essentially unaware that multiple requests had come in so close together. The result was that multiple reviews were submitted, artificially changing the pages overall ranking even though only one review actually showed up on the page for this user. The user can then delete their single review, and repeat this cycle over and over. It took Facebook approximately two months to fix this vulnerability, but in the end it was fixed and [Josip] received a nice bounty.

The Digital Ocean hack was essentially the exact same process. This time instead of hacking page reviews, [Josip] went after some free money. He found that he was able to submit the same promotional code multiple times, resulting in a hefty discount at checkout time. Digital Ocean wasted no time fixing this bug, repairing it within just ten days of the disclosure.