New Part Day: The ESP32 Has Been Released

A few years ago, a strange little chip showed up on Seeed Studio one day. It was the ESP8266, originally sold as a serial to WiFi adapter. Since then, the microcontroller in this wee WiFi module was discovered, and the ESP8266 has been the breakout module for hundreds of Internet of Thing modules, and other wireless baubles.

The company behind the ESP8266, Espressif, wasn’t sitting on their laurels for the last few years. They’ve been working on a followup to the ESP8266. It’s the ESP32, and it’s faster, has more peripherals, better WiFi, and Bluetooth LE. Since Christmas, we’ve been ogling this chip. Now, it’s finally out. You can buy an ESP32 right now. Consider the ESP32 released.

Almost exactly two years ago, the forerunner of the ESP32 was released, allowing anyone to blink a LED from the Internet for five dollars. There was a catch with the release of the ESP8266, and that was documentation. Documentation in English did not exist, and it took Espressif a while to realize the hit they had on their hands. Even now, with a proper English datasheet from Espressif, we don’t know if the ESP8266 has 5V tolerant pins. Documentation was an issue for the ESP8266, but it didn’t really matter because someone on the Internet figured it out.

History doesn’t repeat itself, but it is the franchise with the most reboots. There’s some documentation for the ESP32, but it’s far from complete. There’s a CAN bus peripheral in the ESP32, but no one knows what pins it’s attached to. There are some secrets hidden away, but no one is at liberty to discuss them. No one outside Espressif has any idea if the specs are real. This will, of course, change in the next month or so, but only due to the tireless work of electronics enthusiasts the world over.

Right now, there are several listings on the usual online outlets including Espressif’s Taobao shop and Seeed Studio offering either bare ESP32 chips or modules based on this WiFi Bluetooth wonder. These modules include the ESP-Wroom-32 (PDF) that is seemingly based on the ESP31 test modules released late last year and the ESP3212, a module based on the popular ESP8266-12. There are also bare chips floating about.

As far as any new information regarding the ESP32 is concerned, don’t expect much. It’s released, though, and in a month or so the work of documenting this supposed wonderchip will begin.

Although they’re not available to everyone quite yet, we have two ESP-32 modules in hand, and [Elliot] is currently slogging through installing the toolchain and getting everything working. Watch this space, because we’re going to have an Introduction to the ESP-32 post up shortly.

Hackaday Prize Entry: A One Hand Bottle Opener

For the next month, the Hackaday Prize is all about Assistive Technologies. You would think this means exoskeletons, 3D printed prosthetics, and better wheelchairs, and you’d be right. This project in the running for the Assistive Technologies portion of the prize isn’t what you would expect. It’s a brilliantly simple way to open a water bottle with one hand. Think of it as the minimum viable project for assistive technologies, and a brilliant use of a few 3D printed parts and some metric bolts.

The OHBO – the One Hand Bottle Opener – is just a simple 3D printed ring that fits over a water bottle. There’s a small arm attached with a few bolts that lock this ring onto the bottle. With this bottle opener attached, it only requires a simple twist of the wrist to open a screw-top bottle.

As you can see in the video below, this would be a fantastic device for anyone with one hand to keep around the fridge. Of course, like all good Hackaday Prize entries, all the files to recreate this build are available, with just a few bits of hardware required to complete the build.

Continue reading “Hackaday Prize Entry: A One Hand Bottle Opener”

Enjoy The Last Throes Of Summer With A Nice Pool Automation Project

[Ken Rumer] bought a new house. It came with a troublingly complex pool system. It had solar heating. It had gas heating. Electricity was involved somehow. It had timers and gadgets. Sand could be fed into one end and clean water came out the other. There was even a spa thrown into the mix.

Needless to say, within the first few months of owning their very own chemical plant they ran into some near meltdowns. They managed to heat the pool with 250 dollars of gas in a day. They managed to drain the spa entirely into the pool, but thankfully never managed the reverse. [Ken] knew something had to change. It didn’t hurt that it seemed like a fun challenge.

The first step was to tear out as much of the old control system as could be spared. An old synchronous motor timer’s chlorine rusted guts were ripped out. The solar controler was next to be sent to its final resting place. The manual valves were all replaced with fancy new ones.

Rather than risk his fallible human state draining the pool into the downstairs toilet, he’d add a robot’s cold logical gatekeeping in order to protect house and home. It was a simple matter of involving the usual suspects. Raspberry Pi and Arduino Man collaborated on the controls. Import relay boards danced to their commands. A small suite of sensors lent their aid.

Now as the soon-to-be autumn sun sets, the pool begins to cool and the spa begins to heat automatically. The children are put to bed, tired from a fun day at the pool, and [Ken] gets to lounge in his spa; watching the distant twinkling of lights on his backyard industrial complex.

Portable Battery Bank Only Looks Like A Bomb

If one of the design goals of [wsw4jr]’s portable solar battery bank build was to make something that the local bomb squad would not hesitate to detonate with a water cannon if he leaves it unattended, then mission accomplished.

We kid, but really, the whole thing has a sort of “Spy vs. Spy” vibe that belies its simple purpose. A battery bank is just an array of batteries, some kind of charge controller, and an inverter. The batteries are charged by any means possible – in this case by a small array of solar panels. The mains output of the inverter is used to power whatever doodads you have.

[wsw4jr] didn’t mention of the inverter specs, but from the size of the batteries and the wiring – both of which he admits are not yet up to snuff in his prototype – it’s a safe guess that the intended loads are pretty small.  Tipping the scale at 60 pounds, the unit tends toward the luggable end of the portability scale. Still, this could be a great tool for working out in the field, or maybe even tailgating.

We’ve seen expedient battery banks and emergency power from cordless drill batteries before, but this build is quite a bit more sophisticated. We’ll be watching for updates on this one.

3D-Printed Prosthetic Puts The Power In The Hands Of Those Who Need It

In recent years, prosthetics have seen a dramatic increase in innovation due to the rise of 3D printing. [Nicholas Huchet] — missing a hand due to a workplace accident in 2002 — spent his residency at Fab Lab Berlin designing, building, testing and sharing the files and tutorials for a prosthetic hand that costs around 700 Euros.

[Huchet] founded Bionicohand with the intent of using the technology to make prosthetic limbs available to those without reliable medical or social assistance — as well as for amputees in countries without such systems — which can cost tens of thousands of dollars. The parts took a week to print while assembly and modifications to suit [Huchet’s] arm took another four days, but the final product is functional and uses affordable myoelectric sensors, boards and servos — plus there’s always the option of using a basic 3D scanner to accommodate for existing prosthetic mounts for the individual.

Continue reading “3D-Printed Prosthetic Puts The Power In The Hands Of Those Who Need It”

Would You Like A Satellite Dish?

Satellite dishes are a common site these days, although admittedly most of them are Ku- and Ka-band dishes. The older C-band dishes are still around, though, just less frequently in people’s yards. [Greenish Apple] decide to cut the cable and start watching free TV so he built a C-band dish. The trick is, he made the dish out of wood.

The design is the offset type, not a prime focus dish–that is, the electronics are not in the center of the dish but on the side. Wood isn’t particularly good at reflecting RF, of course, so over the wooden skeleton, he used flashing.

Continue reading “Would You Like A Satellite Dish?”

Bamboo Plant Becomes A Stylish Light Switch

If flipping a regular old light switch or pressing buttons isn’t an adequately pleasing way to use your appliances around the house, how about poking at the leaves of a plant to turn on your lamp? [Xkitz] has provided a thorough breakdown of how to turn any conductive object in your living space into a nifty capacitive touch switch that adds a bit of charm to such an everyday action.

Creating an electrostatic field around a conductive medium, the capacitive touch relay constantly monitors this field and will toggle when any minuscule change to the capacitance is detected. [Xkitz] uses a bamboo plant as his trigger. Gently touching any leaf will still act as an adequate trigger — as cool demonstration of how the electrostatic field works.

Continue reading “Bamboo Plant Becomes A Stylish Light Switch”