Using Missile Tech To See Like Predator

[Artem Litvinovich] wanted to see by heat vision like in the Predator movies. He not only succeeded but went on to see in color, medium-wave IR, short-wave IR, and ultraviolet using a very unique approach since his effort began back in 2009.

He started with a box based on the basic pinhole camera concept. In the box is a physical X-Y digitizer moving a photodiode to collect the thousands of points needed to create a picture. First all he got, due to the high signal amplification, was the 60 cycle hum that permeates our lives. A Faraday cage around the box helped but metal foil around the sensor and amplifier finally eliminated the noise. Now he had pictures in the near infrared (NIR). Continue reading “Using Missile Tech To See Like Predator”

The Art And Science Of Bending Sheet Metal

A motor mount. A sturdy enclosure. A 43.7° bracket. The average hack requires at least one angled metal part, and the best tool to make one is still the good ol’ press brake. Bending parts requires a few extra thoughts in the design and layout of the flat patterns, so if you want to know about bend allowances, bend deduction and how to bend accurate parts even without a press, read on.

Continue reading “The Art And Science Of Bending Sheet Metal”

Hacking R/C Brushless Motor Controllers For Use In Big Robots

[professor churlz] wrote in to let us know his results with modifying radio control ESCs (Electronic Speed Controllers) for use in a large (250lb range) BattleBot’s drivetrain. It’s a very long and involved build log entry that is chock-full of details and background.

If you want something spinning hard and fast, brushless is where it’s at. Brushless motors offer much better power-to-weight ratios compared to brushed DC motors, but some applications – like a large robot’s drivetrain – are less straightforward than others. One of the biggest issues is control. Inexpensive brushless motors are promising, but as [professor churlz] puts it, “hobby motor control equipment is not well suited for the task. Usually created for model airplanes, the controllers are lightly built, rated to an inch of the components’ lives using unrealistic methods, and usually do not feature reversing or the ability to maintain torque at low speeds and near-stall conditions, which is where DC motors shine.” Taking into account the inertia of a 243 lb robot is a factor as well – the controller and motor want to start moving immediately, but the heavy robot on the other side of it doesn’t. The answer was a mixture of hardware and firmware tweaking with a lot of testing.

Continue reading “Hacking R/C Brushless Motor Controllers For Use In Big Robots”

Where (Almost) No GoPro Has Gone Before

What would it be like to ride a six foot rocket to nearly 400,000 feet at Mach 5.5? Thanks to UP Areospace and some GoPro cameras, you can find out.

The rocket was a test for the Maraia Capsule project. Mach 5.5, for reference, is 3,800MPH. It appears several different GoPro cameras took the footage. You can see the upward travel, some great views of Earth, and the return on the video below.

Continue reading “Where (Almost) No GoPro Has Gone Before”

Hackaday Prize Entry: Harmonicas, Candy, And Van Halen

Watch enough How It’s Made, and you’ll soon become very enthusiastic about computer vision and compressed air. In factories all around the world, production lines automatically sort the wheat from the chaff by running a product underneath a camera and blowing defective product off the line.

For his Hackaday Prize entry, [Fabien] is attempting this same task. He’s building a machine that will rapidly sort candy with computer vision and precisely controlled jets of air. He’s also planning for the Van Halen reunion and building a CNC harmonica.

Right now, the design has a hopper full of M&Ms dropping through a channel where a camera looks at each individual piece of candy. A Raspberry Pi, camera, and OpenMV detect all the red, yellow, brown, and blue M&Ms, and send that information to a computer controlling a suite of pneumatic valves. When these valves open, candy of different colors is shuffled off into it’s own bin. It’s the perfect device for someone responsible for reading Van Halen’s rider.

In an interesting little side project, [Fabien] needed a way to test the pneumatic valves before building the color sensor and candy chute. He had a harmonica lying around, and built something we’re surprised we’ve never seen before. It’s a CNC harmonica, capable of belting out a few tunes. You can check out that testing video after the break.

Continue reading “Hackaday Prize Entry: Harmonicas, Candy, And Van Halen”

DIY USB Type C

For many years, the humble serial port was one of the best ways to communicate with an embedded system. Then USB ports became more popular and serial ports started to vanish. These days, even if you’re using a serial protocol to communicate with the microcontroller, it’s often over USB. And USB provides a convenient source of 5 V too. In short, we’ve made our peace with USB.

And then they go and change it. USB type C is a small connector that is reversible and has more options for power and connectivity. However, it is yet another new interface to figure out. [Scorpia] recently posted an article about USB type C that you may find useful.

Continue reading “DIY USB Type C”

Hack A Bike Electroetching

[Melka] wanted a track bike, but never quite got around to buying a nice one. Then he found an inexpensive abandoned project bike for 10 Euro. He had to do a lot of work to make it serviceable and he detailed it all in a forum post. What caught our eye, though, was his technique for electroetching.

The process is simple, but [Melka] says the procedure caused hydrochloric acid fumes as a byproduct. Your lungs don’t like HCl fumes. Apart from the danger, you probably have everything you need. He used electrical tape to create a stencil on the metal (although he mentioned that Kapton tape might come off better afterward) and a saturated solution of common table salt as the electrolyte.

Power comes from a bench power supply set to about 24V. The positive lead was connected to the metal and the ground to the sponge. From the photos, it looks like the particular piece and solution caused about 600mA to flow. After 10 minutes, the metal etched out to about 0.2 mm. After the etching, [Melka] brazed some brass into the etched area to make an interesting looking logo.

If you have a laser cutter, you can skip the chemicals. We’ve even seen laser etching combine with a 3D printer to produce PCBs. [Melka’s] method is a little messier and probably would not do fine lines readily, but if you need to etch steel and you don’t mind the fumes, it should be simple to try.