Electronic Drum Toy Built From Scratch

Drum kits used to be key to any serious band, however, these days, much of our music is created on computer or using a drum machine instead. [spanceac] has built a simple example of the latter, using a microcontroller to build a basic sample-based drum toy.

The brains of the operation is the STM32F100VET6B, which comes complete with a 12-bit DAC for outputting sound. It’s also got a healthy 512 KB of flash, enabling it to store the drum samples onboard without the need for extra parts. Samples are stored at a sample rate of 22,050 Hz in 16-bit resolution – decent quality for a tiny little build, even if the DAC chops that back down to 12-bits later.

[spanceac] was sure to code proper mixing into the drum machine, so that triggering a second sample doesn’t stop the first one playing. With a kick, snare, two toms, and crash and ride samples onboard, there’s plenty to get a solid beat going on the kit.  It’s all built up on a small PCB with tactile buttons to activate each sound.

The demo video shows the kit performing ably; it’s not clear if there’s an issue with latency on the samples or that’s just from the difficulty of [spanceac] playing one-handed. If the former, likely some code tweaks or simply trimming silence at the start of samples would be all that was needed. Overall, it’s a neat little groovebox, and the kind of thing that’s great fun to use when jamming with other musicians. Video after the break.

Continue reading “Electronic Drum Toy Built From Scratch”

Art of 3D printer in the middle of printing a Hackaday Jolly Wrencher logo

3D Printering: Soldering A Heated Bed

There’s an old saying about something being a “drop in the ocean.” That’s how I felt faced with the prospect of replacing a 12 V heated bed on my printer with a new 24 V one. The old bed had a nice connector assembled from the factory, although I had replaced the cable long ago due to heating issues with that particular printer. The new bed, however, just had bare copper pads.

I’m no soldering novice: I made my first solder joint sometime in the early 1970s. So I felt up to the challenge, but I also knew I wouldn’t be able to use my usual Edsyn iron for a job like this. Since the heated bed is essentially a giant heatsink for these pads, I knew it would require the big guns. I dug out my old — and I mean super old — Weller 140 W soldering gun. Surely, that would do the trick, right?

Continue reading “3D Printering: Soldering A Heated Bed”

Reusable Booster Rockets, Asian Roundup

The Space Shuttle’s solid rocket boosters were reusable, although ultimately the overall system didn’t prove cheaper than expendable launches. But given the successes of the Falcon 9 program — booster B1051 completed its 11th mission last month — the idea of a rocket stage returning to the launch site and being reused isn’t such a crazy proposition anymore. It’s not surprising that other space agencies around the world are pursuing this technology.

Last year the India Space Research Organization (ISRO) announced plans for a reusable launcher program based on their GSLV Mark III rocket. The Japan Aerospace Exploratory Agency (JAXA) announced last Fall that it is beginning a reusable rocket project, in cooperation with various industries and universities in Japan. The South Korean space agency, Korea Aerospace Research Institute (KARI), was surprised in November when lawmakers announced a reusable rocket program that wasn’t requested in their 2022 budget. Not in Asia, but in December France’s ArianeGroup announced a reusable rocket program called Maïa.

Speaking of South Korea’s rocketry program, we wrote about the Nuri rocket in October which failed to reach orbit because of a problem in the third stage. Kari recently completed a review of all the data, and concluded the problem was with the anchors of the helium tanks which are located inside the oxidizer tank.

Apparently the changing buoyancy of the submerged tanks with altitude wasn’t completely accounted for in the design of the mounting brackets. When they ultimately failed, the resulting broken piping caused a LOX leak and the subsequent 46-second premature engine shutdown. The next scheduled launch in May 2022 will very likely be delayed.

 

Haber-Bosch And The Greening Of Ammonia Production

We here on Earth live at the bottom of an ocean of nitrogen. Nearly 80% of every breath we take is nitrogen, and the element is a vital component of the building blocks of life. Nitrogen is critical to the backbone of proteins that form the scaffold that life hangs on and that catalyze the myriad reactions in our cells, and the information needed to build these biopolymers is encoded in nucleic acids, themselves nitrogen-rich molecules.

And yet, in its abundant gaseous form, nitrogen remains directly unavailable to higher life forms, unusably inert and unreactive. We must steal our vital supply of nitrogen from the few species that have learned the biochemical trick of turning atmospheric nitrogen into more reactive compounds like ammonia. Or at least until relatively recently, when a couple of particularly clever members of our species found a way to pull nitrogen from the air using a combination of chemistry and engineering now known as the Haber-Bosch process.

Haber-Bosch has been wildly successful, and thanks to the crops fertilized with its nitrogenous output, is directly responsible for growing the population from a billion people in 1900 to almost eight billion people today. Fully 50% of the nitrogen in your body right now probably came from a Haber-Bosch reactor somewhere, so we all quite literally depend on it for our lives. As miraculous as Haber-Bosch is, though, it’s not without its problems, particularly in this age of dwindling supplies of the fossil fuels needed to run it. Here, we’ll take a deep dive into Haber-Bosch, and we’ll also take a look at ways to potentially decarbonize our nitrogen fixation industry in the future.

Continue reading “Haber-Bosch And The Greening Of Ammonia Production”

LED Bubbles From The 1970s Tell The Time

[CuriousMarc] is nothing if not curious. Finding some old TI timekeeping chips to reverse engineer, he set out to make a clock using old-fashioned “bubble LEDs.” You can see the result of his tinkering in the video below. For the uninitiated, bubble LEDs are 7-segment LEDs with magnifying bubbles over each digit. These were popular in calculators, watches, and other places that used LEDs before LCDs largely displaced them.

The history of these has to do with the power required to light an LED. You don’t technically need a magnifying lens, but larger LEDs take more power. These displays were relatively low power and used tiny LEDs with light pipes to make each dot a full segment. The lens made the segments larger and easier to see.

Beyond the TI chip and HP displays, there isn’t too much else needed. [Marc] just wired the whole thing using the IC as a substrate. Sort of dead bug construction using enameled wire. At first, it didn’t work but it turned out to be a battery issue. The device really wanted 2.5 V and not the 3 V provided by the battery. The solution required a little detective work.

We know this isn’t a very practical project, but we love seeing this old tech again and while the dead bug construction isn’t beautiful, there is something appealing about the look of it. Maybe one day people will build steampunk things and discopunk will be for the 1970s?

We’ve seen bubble LED projects before. If you want something more in a watch form factor, that exists, too.

Continue reading “LED Bubbles From The 1970s Tell The Time”

Vacuum tube Atari Punk Console

The Atari Punk Console, Now With More Vacuum Tubes

Most of us have beheld the sonic glory of an Atari Punk Console, that lo-fi synth whose classic incarnation is a pair of 555 timers set up to warble and bleep in interesting ways. Very few of us, however, have likely seen an APC built from 555s that are made from vacuum tubes.

It’s little surprise to regular readers that this one comes to us by way of [David] at Usagi Electric, who hasn’t met a circuit that couldn’t be improved by realizing it in vacuum tubes. His “hollow-state” Atari Punk Console began with the 18-tube version of the 555 that he built just for fun a while back, which proved popular enough that he’s working on a kit version, the prototype of which served as the second timer for the synth. With 32 tubes aglow amid a rats-nest of jumpers, the console managed to make the requisites sounds, but lacked a certain elegance. [David] then vastly simplified the design, reducing the BOM to just four dual-triode tubes. Housed on a CNC milled PCB in a custom wood box, the synth does a respectable job and looks good doing it. The video below shows both versions in action, as well as detailing their construction.

As cool as a vacuum tube synth may be, we realize that not everyone goes for the hot glass approach. No worries — plenty of silicon Atari Punk Consoles to choose from here. There’s one built into a joystick, a circuit sculpture version complete with mini-CRT, or even eight APCs teamed up with MIDI control.

Continue reading “The Atari Punk Console, Now With More Vacuum Tubes”

HitClips Cartridge Hack

HitClips Custom Cartridge Hack Will Never Give Up, Let Down, Or Turn Around

In August 2000, Tiger Electronics released HitClips: Music cartridges and players designed to easily share 60 second low quality Clips of a youngster’s favorite Hits. Various players were available, and individual cartridges were inexpensive enough to collect. And it’s these toy music players that [Guy Dupont] has been hacking quite successfully on as you can see in the video after the break and on [Guy]’s Hackaday.io page.

HitClips Cartridge Hack
Two PCB’s make up the new cartridge

[Guy]’s main goal was to make cartridges of his own that could not just hold more music than the short clips in the commercially made product, but could make use of modern technology that has matured since HitClips came onto the scene more than 20 years go.

The project’s components are relatively simple, but beautifully executed. An ATTINY84 didn’t work out, so a SAM D09 controller was put it place to to read files from a microSD card and translate the WAV file into the HitClips player’s format. 3d printed cartridges and custom PCB’s complete the hack, ensuring that you can use any of the many HitClips players to play something new for a change.

The end result is quite good, considering that it’s still just 8 bit audio on a 20 year old toy player. Tiger Electronics made another toy that’s quite popular with hackers of the musical kind.

Continue reading “HitClips Custom Cartridge Hack Will Never Give Up, Let Down, Or Turn Around”