Making Wire Explode With 4,000 Joules Of Energy

The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)
The piece of copper wire moments before getting vaporized by 4,000 joules. (Credit: Hyperspace Pirate, Youtube)

In lieu of high-explosives, an exploding wire circuit can make for an interesting substitute. As [Hyperspace Pirate] demonstrates in a recent video, the act of pumping a lot of current very fast through a thin piece of metal can make for a rather violent detonation. The basic idea is that by having the metal wire (or equivalent) being subjected to a sufficiently large amount of power, it will not just burn through, but effectively vaporize, creating a very localized stream of plasma for the current to keep travelling through and create a major shockwave in the process.

This makes the exploding wire method (EWM) an ideal circuit for any application where you need to have a very fast, very precise generating of plasma and an easy to synchronize detonation. EWM was first demonstrated in the 18th century in the Netherlands by [Martin van Marum]. These days it finds use for creating metal nanoparticles, brief momentary light sources and detonators in explosives, including for nuclear (implosion type) weapons.

While it sounds easy enough to just strap a honkin’ big battery of capacitors to a switch and a piece of wire, [Hyperspace Pirate]’s video demonstrates that it’s a bit more involved than that. Switching so much current at high voltages ended up destroying a solid-state (SCR) switch, and factors like resistance and capacitance can turn an exploding wire into merely a heated one that breaks before any plasma or arcing can take place, or waste a lot of potential energy.

As for whether it’s ‘try at home’ safe, note that he had to move to an abandoned industrial site due to the noise levels, and the resulting machine he cobbled together involves a lot of high-voltage wiring. Hearing protection and extreme caution are more than warranted.

Continue reading “Making Wire Explode With 4,000 Joules Of Energy”

A design sketch of a partially disassembled candybar mobile phone. The enclosure is a clamshell of plastic that envelops the functional internals of the device and is illustrated to the right upper corner of the image, slightly overlapping the internals evoking the idea of the internals being inserted into the cover. The words "buttons part of the cover" are written toward the top with an arrow toward the numpad and "plastic shell with various design" is written toward the bottom with an arrow toward the translucent blue shell.

The Nokia Design Archive Is Open For Viewing

During the Cambrian Explosion of cellphone form factors at the turn of the millenium, Nokia reigned supreme. If you’d like to see what they were doing behind the scenes to design these wild phones, you’ll love the Nokia Design Archive from Aalto University.

Featuring images, presentations, videos and a number of other goodies (remember transparencies?), this collection gives us some in-depth insight into how consumer products were dreamed up, designed, and brought to market. Some projects require more reading between the lines than others as the Archive is somewhat fragmented, but we think it could still be an invaluable peek into product design, especially if you’re working on projects that you want to be usable outside of a hacker audience.

The Archive also includes approximately 2000 objects including many unreleased “unknown” models and prototypes of phones that actually did make it into the wild. While we’d love to get our hands on some of these devices IRL, having images with reference colors is probably the next best thing. Having replaced a number of smartphone screens, we hope more hackers take up the buttons and indestructible casing of these elegant devices for a more civilized age.

Thanks to [Michael Fitzmayer] for the tip! Be sure to checkout his work on Nokia N-Gage phones, including an SDK if you too love to taco talk.

Lubricating a keyboard switch the proper way, with a brush and the switch opened up.

Probably Ruining A Keyboard For Science

Lubing your keyboard’s switches is definitely a personal preference, though we’re sure that many would call it absolutely necessary. However, people from both camps would probably not suggest is using WD-40 to do so, instead pointing toward Krytox or at least Super Lube. But there are enough people out there who have tried the great water displacer and claim to have experienced no problems that [Sea_Scheme6784] decided to give it a go (so you don’t have to).

Having now collected enough boards to sacrifice one to the lubrication gods, [Sea_Scheme6784] chose a completely stock Logitech G413 SE with brown switches and heavily sprayed every one. Oh yeah, there was no taking them apart first as most lube enthusiasts would advise. No carefully painting it on in the right places with a small brush. Just mad spraying, y’all.

The effects were noticeable immediately — it changed the feel for the better and made the switches way less scratchy. Also the sound is more poppy, despite drowning in not-lubricant. Interesting! [Sea_Scheme6784] says the stabilizers are still rattling away, so that’s no good. Keep an eye on r/mechanicalkeyboards for updates on these shenanigans. We know we will.

Want to know what else you can do to to switches besides lube? Lots of stuff.

Main and thumbnail images via Kinetic Labs

Interactive LED Matrix Is A Great Way To Learn About Motion Controls

It’s simple enough to wire up an LED matrix and have it display some pre-programmed routines. What can be more fun is when the LEDs are actually interactive in some regard. [Giulio Pons] achieved this with his interactive LED box, which lets you play with the pixels via motion controls.

The build runs of a Wemos D1 mini, which is a devboard based around the ESP8266 microcontroller. [Giulio] hooked this up to a matrix of WS2812B addressable LEDs in two 32×8 panels, creating a total display of 512 RGB LEDs. The LEDs are driven with the aid of an Adafruit graphics library that lets the whole display be addressed via XY coordinates. For interactivity, [Giulio] added a MPU6050 3-axis gyroscope and accelerometer to the build. Meanwhile, power is via 18650 lithium-ion cells, with the classic old 7805 regulator stepping down their output to a safe voltage. Thanks to the motion sensing abilities of the MPU6050, [Giulio] was able to code animations where the LEDs emulate glowing balls rolling around on a plane.

It’s a simple build, but one that taught [Giulio] all kinds of useful skills—from working with microcontrollers to doing the maths for motion controls. There’s a lot you can do with LED matrixes if you put your mind to it, and if you just start experimenting, you’re almost certain to learn something. Video after the break.

Continue reading “Interactive LED Matrix Is A Great Way To Learn About Motion Controls”

Hydroelectric Generator Gets Power From Siphoning

Siphons are one of those physics phenomena that, like gyroscopes, non-Newtonian fluids, and electricity, seem almost magical. Thanks to atmospheric pressure, simply filling a tube with liquid and placing the end of the tube below the liquid level of a container allows it to flow against gravity, over a barrier, and down into another container without any extra energy inputs once the siphon is started. They’re not just tricks, though; siphons have practical applications as well, such as in siphon-powered hydroelectric turbine.

This is an iteration of [Beyond the Print]’s efforts to draw useful energy from a local dam with an uneconomic amount of water pressure and/or volume for a typical hydroelectric power station. One of his earlier attempts involved a water wheel but this siphon-based device uses a more efficient impeller design instead, and it also keeps the generator dry as well. Using 3″ PVC piping to channel the siphon, as well as a short length of thinner pipe to attach a shop vac for priming the siphon, water is drawn from the reservoir, up the pipe, and then down through the impeller which spins a small DC generator.

This design is generating about 9 V open-circuit, and we’d assume there’s enough power available to charge a phone or power a small microcontroller device. However, there’s a ton of room for improvement here. The major problem [Beyond the Print] is currently experiencing is getting air into the system and having the siphon broken, which he’s solved temporarily by adding a bucket at the outflow. This slows down the water though, so perhaps with any air leaks mitigated the power generation capabilities will be greatly increased.

Continue reading “Hydroelectric Generator Gets Power From Siphoning”

Family Bass Is Musical NES Magic

The Family BASIC keyboard was a peripheral that was built for programming on the Nintendo Family Computer, or Famicom.  As [Linus Åkesson] demonstrates, though, it can do so much more. Meet the Family Bass.

The core of the project is a special adapter which [Linus] created to work with the Family BASIC keyboard. Traditionally, the keyboard plugs into the Famicom’s expansion port, but [Linus] wanted to hook it up to the controller port on a Nintendo Entertainment System instead. Getting them to talk was achieved with an ATtiny85 which could cycle through the 72-key matrix in the keyboard and spit out a serial stream of data the controller port could understand.

On the NES end, the console is set up to run custom code from [Linus] that lets him play the internal sound chip’s triangle wave with the keyboard. He demonstrates this ably in a video where he performs a song called Platform Hopping along with some of his other retro computer instruments.

We’ve seen [Linus] build some other great instruments in the past too, which are both creative and nostalgic. Video after the break.

Continue reading “Family Bass Is Musical NES Magic”

Mining And Refining: The Halogens

I was looking at the periodic table of the elements the other day, as one does, when my eye fell upon the right-hand side of the chart. Right next to the noble gases at the extreme edge of the table is a column of elements with similar and interesting properties: the halogens. Almost all of these reactive elements are pretty familiar, especially chlorine, which most of us eat by the gram every day in the form of table salt. As the neighborhoods of the periodic table go, Group 17 is pretty familiar territory.

But for some reason, one member of this group caught my attention: iodine. I realized I had no idea where we get iodine, which led to the realization that apart from chlorine, I really didn’t know where any of the halogens came from. And as usual, that meant I needed to dig in and learn a little bit about the mining and refining of the halogens. At least most of them; as interesting as they may be, we’ll be skipping the naturally occurring but rare and highly radioactive halogen astatine, as well as the synthetic halogen tennessine, which lives just below it in the group.

Continue reading “Mining And Refining: The Halogens”