BLE Rain Gauge Sips Water And Batteries

It isn’t that hard to make an electronic rain gauge if you have a steady source of power or you don’t mind changing batteries often. But [Matthew Ford] offers a third option: a simple device with a Bluetooth Low Energy (BLE) module that can get a few years of a pair of AA batteries.

The approach has several advantages. Batteries make the device self-contained, and changing them infrequently is an obvious win. In addition, the BLE allows the device to be wireless and send data directly to an Android device. Thanks to a WH-SP-RG rain gauge, there’s not much to that part. The smart part is an nRF52832 module and some minor parts. The phone side uses an off-the-shelf Android app.

In a project like this, it is critical to have timers that really put the CPU to sleep. [Matthew] had to modify the Arduino libraries to allow the lp_timer objects to make it to an hour. Without the modifications, the timer can only reach 8.5 minutes. Sure, you could stack them, but that means taking a power hit multiple times an hour which would affect battery life.

Not the most complex project, but more complexity would mean lower battery life, so — as they say — less is more. We couldn’t help but think that with rechargeable batteries and a small solar panel, this could last a very long time.

LoRa, of course, is another choice. You can make 3D print a tipping bucket device, too.

Stepper Motor Operating Principle And Microstepping Explained

The [Denki Otaku] YouTube channel took a look recently at some stepper motors, or ‘stepping motors’ as they’re called in Japanese. Using a 2-phase stepper motor as an example, the stepper motor is taken apart and its components explained. Next a primer on the types and the ways of driving stepper motors is given, providing a decent overview of the basics at the hand of practical examples.

As great as theoretical explanations are, there’s a lot of value in watching the internals of a stepper motor move when its coils are activated in order. Also demonstrated are PWM-controlled stepper motor drivers before diving into the peculiarities of microstepping, whereby the driving of the coils is done such that the stator moves in the smallest possible increments, often through flux levels in these coils. This allows for significantly finer positioning of the output shaft than with wave stepping and similar methods that are highly dependent on the number of phases and coils.

As demonstrated in the video, another major benefit of microstepping is that it creates much smoother movement while moving, but also noted is that servo motors are often what you want instead. This is a topic which we addressed in our recent article on the workings of stepper motors, with particular focus on the 4-phase 28BYJ-48 stepper motor and the disadvantages of steppers versus servos.

Continue reading “Stepper Motor Operating Principle And Microstepping Explained”