3D-Printed Scanner Automates Deck Management For Trading Card Gamers

Those who indulge in trading card games know that building the best deck is the key to victory. What exactly that entails is a mystery to us muggles, but keeping track of your cards is a vital part of the process, one that this DIY card scanner (original German; English translation) seeks to automate.

At its heart, [Fraens]’ card scanner is all about paper handling, which is always an engineering task fraught with peril. Cards like those for Magic: The Gathering and other TCGs are meant to be handled by human hands, and automating the task of flipping through them presents some challenges. [Fraens] uses a pair of motorized 3D-printed rollers with O-rings to form a conveyor belt that can pull one card at a time off the bottom of a deck. An adjustable retaining roller made from the most adorable linear bearing we’ve ever seen ensures that only one card at a time is pulled from the hopper onto an imaging platen. An adjustable mount holds a smartphone to take a picture of the card, which is fed into an app that extracts all the details and categorizes the cards in the deck.

Aside from the card handling mechanism, there are some pretty slick details to this build. The first is that [Fraens] noticed that the glossy finish on some cards interfered with scanning, leading him to add a diffused LED ringlight to the rig. If an image isn’t scannable, the light goes through a process of dimming and switching colors until a good scan is achieved. Also, to avoid the need to modify the existing TCG deck management app, [Fraens] added a microphone to the control side of the scanner that listens for the sounds the app makes when it scans cards. And if Magic isn’t your thing, the basic mechanism could easily be modified to scan everything from business cards to old family photos.

Continue reading “3D-Printed Scanner Automates Deck Management For Trading Card Gamers”

Physical Key Copying Starts With A Flipper Zero

A moment’s inattention is all it takes to gather the information needed to make a physical copy of a key. It’s not necessarily an easy process, though, so if pen testing is your game, something like this Flipper Zero key copying toolchain can make the process quicker and easier when the opportunity presents itself.

Of course, we’re not advocating for any illegal here; this is just another tool for your lock-sports bag of tricks. And yes, there are plenty of other ways to accomplish this, but using a Flipper Zero to attack a strictly mechanical lock is kind of neat. The toolchain posted by [No-Lock216] starts with an app called KeyCopier, which draws a virtual key blank on the Flipper Zero screen.

The app allows you to move the baseline for each pin to the proper depth, quickly recording the bitting for the key. Later, the bitting can be entered into an online app called keygen which, along with information on the brand of lock and its warding, can produce an STL file suitable for downloading and printing.

Again, there are a ton of ways to make a copy of a key if you have physical access to it, and the comments of the original Reddit post were filled with suggestions amusingly missing the entire point of this. Yes, you can get a key cut at any hardware store for a buck or two that will obviously last a lot longer than a 3D printed copy. But if you only have a few seconds to gather the data from the key, an app like KeyCopier could be really convenient. Personally, we’d find a smartphone app handier, but if you’ve got a Flipper, why not leverage it?

Thanks to [JohnU] for the tip.

Hackaday Links Column Banner

Hackaday Links: March 23, 2025

What a long, strange trip it’s been for NASA astronauts Suni Williams and Bruce Wilmore, who finally completed their eight-day jaunt to space after 289 days. The duo returned to Earth from the ISS on Tuesday along with two other returning astronauts in a picture-perfect splashdown, complete with a dolphin-welcoming committee. For the benefit of those living under rocks these past nine months, Williams and Wilmore slipped the surly bonds way back in June on the first crewed test flight of the Boeing Starliner, bound for a short stay on the ISS before a planned return in the same spacecraft. Alas, all did not go to plan as their ride developed some mechanical difficulties on the way upstairs, and so rather than risk their lives on a return in a questionable capsule, NASA had them cool their heels for a couple of months while Starliner headed home without them.

There’s been a lot of talk about how Butch and Suni were “stranded,” but that doesn’t seem fair to us. Sure, their stay on the ISS was unplanned, or at least it wasn’t Plan A; we’re sure this is always a contingency NASA allows for when planning missions. Also unfortunate is the fact that they didn’t get paid overtime for the stay, not that you’d expect they would. But on the other hand, if you’re going to get stuck on a work trip, it might as well be at the world’s most exclusive and expensive resort.

Continue reading “Hackaday Links: March 23, 2025”

Benchtop Haber-Bosch Makes Ammonia At Home

Humans weren’t the first organisms on this planet to figure out how to turn the abundance of nitrogen in the atmosphere into a chemically useful form; that honor goes to some microbes that learned how to make the most of the primordial soup they called home. But to our credit, once [Messrs. Haber and Bosch] figured out how to make ammonia from thin air, we really went gangbusters on it, to the tune of 8 million tons per year of the stuff.

While it’s not likely that [benchtop take on the Haber-Bosch process demonstrated by [Marb’s lab] will turn out more than the barest fraction of that, it’s still pretty cool to see the ammonia-making process executed in such an up close and personal way. The industrial version of Haber-Bosch uses heat, pressure, and catalysts to overcome the objections of diatomic  nitrogen to splitting apart and forming NH3; [Marb]’s version does much the same, albeit at tamer pressures.

[Marb]’s process starts with hydrogen made by dripping sulfuric acid onto zinc strips and drying it through a bed of silica gel. The dried hydrogen then makes its way into a quartz glass reaction tube, which is heated by a modified camp stove. Directly above the flame is a ceramic boat filled with catalyst, which is a mixture of aluminum oxide and iron powder; does that sound like the recipe for thermite to anyone else?

A vial of Berthelot’s reagent, which [Marb] used in his recent blood ammonia assay, indicates when ammonia is produced. To start a run, [Marb] first purges the apparatus with nitrogen, to prevent any hydrogen-related catastrophes. After starting the hydrogen generator and flaring off the excess, he heats up the catalyst bed and starts pushing pure nitrogen through the chamber. In short order the Berthelot reagent starts turning dark blue, indicating the production of ammonia.

It’s a great demonstration of the process, but what we like about it is the fantastic tips about building lab apparatus on the cheap. Particularly the idea of using hardware store pipe clamps to secure glassware; the mold-it-yourself silicone stoppers were cool too.

Continue reading “Benchtop Haber-Bosch Makes Ammonia At Home”

Cheap Endoscopic Camera Helps Automate Pressure Advance Calibration

The difference between 3D printing and good 3D printing comes down to attention to detail. There are so many settings and so many variables, each of which seems to impact the other to a degree that can make setting things up a maddening process. That makes anything that simplifies the process, such as this computer vision pressure advance attachment, a welcome addition to the printing toolchain.

If you haven’t run into the term “pressure advance” for FDM printing before, fear not; it’s pretty intuitive. It’s just a way to compensate for the elasticity of the molten plastic column in the extruder, which can cause variations in the amount of material deposited when the print head acceleration changes, such as at corners or when starting a new layer.

To automate his pressure advance calibration process, [Marius Wachtler] attached one of those dirt-cheap endoscope cameras to the print head of his modified Ender 3, pointing straight down and square with the bed. A test grid is printed in a corner of the bed, with each arm printed using a slightly different pressure advance setting. The camera takes a photo of the pattern, which is processed by computer vision to remove the background and measure the thickness of each line. The line with the least variation wins, and the pressure advance setting used to print that line is used for the rest of the print — no blubs, no blebs.

We’ve seen other pressure-advanced calibrators before, but we like this one because it seems so cheap and easy to put together. True, it does mean sending images off to the cloud for analysis, but that seems a small price to pay for the convenience. And [Marius] is hopeful that he’ll be able to run the model locally at some point; we’re looking forward to that.

Continue reading “Cheap Endoscopic Camera Helps Automate Pressure Advance Calibration”

Chemistry Meets Mechatronics In This Engaging Art Piece

There’s a classic grade school science experiment that involves extracting juice from red cabbage leaves and using it as a pH indicator. It relies on anthocyanins, pigmented compounds that give the cabbage its vibrant color but can change depending on the acidity of the environment they’re in, from pink in acidic conditions to green at higher pH. And anthocyanins are exactly what power this unusual kinetic art piece.

Even before it goes into action, [Nathalie Gebert]’s Anthofluid is pretty cool to look at. The “canvas” of the piece is a thin chamber formed by plexiglass sheets, one of which is perforated by an array of electrodes. A quartet of peristaltic pumps fills the chamber with a solution of red cabbage juice from a large reservoir, itself a mesmerizing process as the purple fluid meanders between the walls of the chamber and snakes around and between the electrodes. Once the chamber is full, an X-Y gantry behind the rear wall moves to a random set of electrodes, deploying a pair of conductors to complete the circuit. When a current is applied, tendrils of green and red appear, not by a pH change but rather by the oxidation and reduction reactions occurring at the positive and negative electrodes. The colors gently waft up through the pale purple solution before fading away into nothingness. Check out the video below for the very cool results.

We find Anthofluid terribly creative, especially in the use of such an unusual medium as red cabbage juice. We also appreciate the collision of chemistry, electricity, and mechatronics to make a piece of art that’s so kinetic but also so relaxing at the same time. It’s the same feeling that [Nathalie]’s previous art piece gave us as it created images on screens of moving thread. Continue reading “Chemistry Meets Mechatronics In This Engaging Art Piece”

World’s Smallest Blinky, Now Even Smaller

Here at Hackaday, it’s a pretty safe bet that putting “World’s smallest” in the title of an article will instantly attract comments claiming that someone else built a far smaller version of the same thing. But that’s OK, because if there’s something smaller than this nearly microscopic LED blinky build, we definitely want to know about it.

The reason behind [Mike Roller]’s build is simple: he wanted to build something smaller than the previous smallest blinky. The 3.2-mm x 2.5-mm footprint of that effort is a tough act to follow, but technology has advanced somewhat in the last seven years, and [Mike] took advantage of that by basing his design on an ATtiny20 microcontroller in a WLCSP package and an 0201 LED, along with a current-limiting resistor and a decoupling capacitor. Powering the project is a 220-μF tantalum capacitor, which at a relatively whopping 3.2 mm x 1.6 mm determines the size of the PCB, which [Mike] insisted on using.

Assembling the project was challenging, to say the least. [Mike] originally tried a laboratory hot plate to reflow the board, but when the magnetic stirrer played havoc with the parts, he switched to a hot-air rework station with a very low airflow. Programming the microcontroller almost seemed like it was more of a challenge; when the pogo pins he was planning to use proved too large for the job he tacked leads made from 38-gauge magnet wire to the board with the aid of a micro hot air tool.

After building version one, [Mike] realized that even smaller components were available, so there’s now a 2.4 mm x 1.5 mm version using an 01005 LED. We suspect there’ll be a version 3.0 soon, though — he mentions that the new TI ultra-small microcontrollers weren’t available yet when he pulled this off, and no doubt he’ll want to take a stab at this again.