CircuitPython Happenings Hack Chat With Adafruit

Join us on Wednesday, July 26 at noon Pacific for the CircuitPython Happenings Hack Chat with The folks from Adafruit!

join-hack-chatIt’s always a party when the good folks from Adafruit stop by the Hack Chat, and we expect no less than that this time around. It’s hard to predict where the conversation will go when [LadyAda], [pt], and [Scott] roll in, but we strongly suspect it’ll center on what’s new in the world of CircuitPython.

We’ve heard that they’ve got some cool stuff going on with CircuitPython on the RP2040, which just might lead to a Python-based fix for the current Bus Pirate supply chain problem. It’ll be a swashbucklingly good time, so make sure you stop by.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, July 26 at 12:00 PM Pacific time. If time zones have you tied up, we have ahandy time zone converter.

Hackaday Links Column Banner

Hackaday Links: July 23, 2023

It may be midwinter in Perth, but people still go to the beach there, which led to the surprising discovery earlier this week of what appears to be a large hunk of space debris. Local authorities quickly responded to reports of a barnacle-encrusted 2.5-m by 3-m tank-like object on the beach. The object, which has clearly seen better days, was described as being made of metal and a “wood-like material,” which on casual inspection is clearly a composite material like Kevlar fibers in some sort of resin. Local fire officials teamed up with forensic chemists to analyze the object for contamination; finding none, West Australia police cordoned off the device to keep the curious at bay. In an apparently acute case of not knowing how the Internet works, they also “urge[d] everyone to refrain from drawing conclusions” online, which of course sent the virtual sleuths into overdrive. An r/whatisthisthing thread makes a good case for it being part of the remains of the third stage of an Indian Polar Satellite Launch Vehicle (PSLV); reentry of these boosters is generally targeted at the East Indian Ocean for safe disposal, but wind and weather seem to have brought this artifact back from the depths.

Continue reading “Hackaday Links: July 23, 2023”

Hackaday Podcast 228: Bats, Eggs, Lasers, Duck Tape, And Assembly Language

Summer’s in full swing, and this week both Elliot and Dan had to sweat things out to get the podcast recorded. But the hacks were cool — see what I did there? — and provided much-needed relief. Join us as we listen in on the world of bats, look at a laser fit for a hackerspace, and learn how to make an array of magnets greater than — or less than — the sum of its parts. There’ll be flying eggs, keyboards connected to cell phones, and everything good about 80s and 90s cable TV, as well as some of the bad stuff. And you won’t want to miss Elliot putting Dan to shame with the super-size Quick Hacks, either, nor should you skip the Can’t Miss sweep with a pair of great articles by Al Williams.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download a long series of ones and zeroes that, when appropriately interpreted, sound like two people talking about nerdy stuff!

Continue reading “Hackaday Podcast 228: Bats, Eggs, Lasers, Duck Tape, And Assembly Language”

Lighting Up With Chemistry, 1823-Style

With our mass-produced butane lighters and matches made in the billions, fire is never more than a flick of the finger away these days. But starting a fire 200 years ago? That’s a different story.

One method we’d never heard of was Döbereiner’s lamp, an 1823 invention by German chemist Johann Wolfgang Döbereiner. At first glance, the device seems a little sketchy, what with a tank of sulfuric acid and a piece of zinc to create a stream of hydrogen gas ignited by a platinum catalyst. But as [Marb’s Lab] shows with the recreation in the video below, while it’s not exactly as pocket-friendly as a Zippo, the device actually has some inherent safety features.

[Marb]’s version is built mainly from laboratory glassware, with a beaker of dilute sulfuric acid — “Add acid to water, like you ought-er!” — bathing a chunk of zinc on a fixed support. An inverted glass funnel acts as a gas collector, which feeds the hydrogen gas to a nozzle through a pinch valve. The hydrogen gas never mixes with oxygen — that would be bad — and the production of gas stops once the gas displaces the sulfuric acid below the level of the zinc pellet. It’s a clever self-limiting feature that probably contributed to the commercial success of the invention back in the day.

To produce a flame, Döbereiner originally used a platinum sponge, which catalyzed the reaction between hydrogen and oxygen in the air; the heat produced by the reaction was enough to ignite the mixture and produce an open flame. [Marb] couldn’t come up with enough of the precious metal, so instead harvested the catalyst from a lighter fluid-fueled hand warmer. The catalyst wasn’t quite enough to generate an open flame, but it glowed pretty brightly, and would be more than enough to start a fire.

Hats off to [Marb] for the great lesson is chemical ingenuity and history. We’ve seen similar old-school catalytic lighters before, too.

Continue reading “Lighting Up With Chemistry, 1823-Style”

Reverse Engineering Reveals Hidden API In Abandonware Trail Camera

It sometimes seems like there are two kinds of cheap hardware devices: those dependent on proprietary software that is no longer available and those that are equally dependent but haven’t been abandoned just quite yet. But rest assured, abandonment is always on the table, and until then, you get to deal with poorly written apps that often suffer from a crippling lack of essential functionality.

Such was the case for the wireless game camera that [Chris Jones] scored on the cheap, but rather than suffering with the original software, he decided to reverse engineer the camera and turn it into something more useful. The eBay description was promising — Bluetooth LE! WiFi! — but the reality proved less so. To save the batteries, WiFi is off by default and can only be turned on by connecting to the camera via BLE using a janky and crash-prone Android app.

[Chris]’ first step in reverse engineering the camera was to snoop into the BLE by capturing the Bluetooth packets to a file and running them through Wireshark. This revealed a write command with the text “BT_KEY_ON” — very promising. After verifying that this command turned on the camera’s access point, [Chris] got to work capturing WiFi packets using PCAPDroid and analyzing the results, again with Wireshark. Using every function available in the OEM app eventually revealed the full API on the camera, which gives file system control, access to individual images, and even putting the camera into live video mode.

Continue reading “Reverse Engineering Reveals Hidden API In Abandonware Trail Camera”

PCMCIA Flash Card Gives Up Its Secrets Thanks To Retro Gear

There are two ways to recover data from an obsolete storage medium. One way is to pull out all the tools in the hacker’s kit — with logic analyzers, oscilloscopes, and bit-banged software in a desperate attempt to reverse engineer the original protocol. The other way is to have a really, really deep junk bin that just happens to contain exactly the right pieces that would have been used decades ago.

For recovering data from a 25-year-old PCMCIA memory card, [Dave] from Vintage Apparatus chose the latter method. But to be fair, characterizing the stash of gear he had to select from as a “junk bin” is pretty insulting. It’s more like a museum of retro technology, which just so happened to hold  Toshiba Libretto, a subnotebook computer hailing from the late 1990s. The machine sports a pair of PCMCIA slots and was just the thing to read the data from the old 32 MB SanDisk flash card, which once lived in a backpack-mounted GPS system for surveyors.

If this hack sounds as easy as plugging things into an old computer, you’d be right — if you just happen to have a stack of floppies containing the Windows 98 drivers for said things. So [Dave]’s task became a game of finding the right combination of cards that already had the drivers installed and would provide the connectivity needed to get the data off the flash card. Between a suspiciously crunchy-sounding floppy drive and an Ethernet card dongle badly in need of some contact cleaner, cobbling together the right hardware was a bit of a chore. After that, a lot of the hack was [Dave] just remembering how we used to do things back in the day, with the eventual solution being transferring over the files to an FTP server on a Raspberry Pi.

The video below tells the whole saga, but the real treat might just be the Vintage Apparatus collection of gear. Incidentally, we really like [Dave]’s idea for storing associated bits and bobs.

Continue reading “PCMCIA Flash Card Gives Up Its Secrets Thanks To Retro Gear”

Hackaday Links Column Banner

Hackaday Links: July 16, 2023

Last week, we noted an attempt to fix a hardware problem with software, which backfired pretty dramatically for Ford when they tried to counter the tendency for driveshafts to fall out of certain of their cars by automatically applying the electric parking brake.

This week, the story is a little different, but still illustrates how software and hardware can interact unpredictably, especially in the automotive space. The story centers on a 2015 Optima recall for a software update for the knock sensor detection system. We can’t find the specifics, but if this recall on a similar Kia model in the same model year range and a class-action lawsuit are any indication, the update looks like it would have made the KSDS more sensitive to worn connecting rod damage, and forced the car into “limp home mode” to limit damage to the engine if knocking is detected.

A clever solution to a mechanical problem? Perhaps, but because the Kia owner in the story claims not to have received the snail-mail recall notice, she got no warning when her bearings started wearing out. Result: a $6,000 bill for a new engine, which she was forced to cover out of pocket. Granted, this software fix isn’t quite as egregious as Ford’s workaround for weak driveshaft mounting bolts, and there may very well have been a lack of maintenance by the car’s owner. But if you’re a Kia mechanical engineer, wouldn’t your first instinct have been to fix the problem causing the rod bearings to wear out, rather than papering over the problem with software?

Continue reading “Hackaday Links: July 16, 2023”