close up hands holding lighting pcb

Circuit Secrets: Exploring A $5 Emergency Light

Who would’ve thought a cheap AliExpress emergency light could be packed with such crafty design choices? Found for about $5, this unit uses simple components yet achieves surprisingly sophisticated behaviors. Its self-latching feature and decisive illumination shut-off are just the beginning. A detailed analysis by [BigCliveDotCom] reveals a smart circuit that defies its humble price.

The circuit operates via a capacitive dropper, a cost-effective way to power low-current devices. What stands out, though, is its self-latching behavior. During a power failure, transistors manage to keep the LEDs illuminated until the battery voltage drops below a precise threshold, avoiding the dreaded fade-to-black. Equally clever is the automatic shut-off when the voltage dips too low, sparing the battery from a full drain.

Modifications are possible, too. For regions with 220V+ mains, swapping the dropper capacitor with a 470nF one can reduce heat dissipation. Replacing the discharge resistor (220k) with a higher value improves longevity by running cooler. What remarkable reverse engineering marvels have you come across? Share it in the comments!  After all, it is fun to hack into consumer stuff. Even if it is just a software hack.

Continue reading “Circuit Secrets: Exploring A $5 Emergency Light”

desk with a hand holding a Lego unit

LDU Decoded: The Untold Tale Of LEGO Dimensions

LEGO bricks might look simplistic, but did you know there’s an actual science behind their sizes? Enter LDUs — LEGO Draw Units — the minuscule measurement standard that allows those tiny interlocking pieces to fit together seamlessly. In a recent video [Brick Sculpt] breaks down this fascinating topic.

So, what is an LDU precisely? It’s the smallest incremental size used to define LEGO’s dimensions. For context, a standard LEGO brick is 20 LDUs wide, and a single plate is 8 LDUs tall. Intriguingly, through clever combinations of headlight bricks, jumper plates, and even rare Minifig neck brackets, builders can achieve offsets as tiny as 1 LDU! That’s the secret sauce behind those impossibly detailed LEGO creations.

We already knew that LEGO is far more than a toy, but this solidifies that theory. It’s a means of constructing for anyone with an open mind – on its own scale. The video below explains in detail how to achieve every dimension possible. If that inspires you to build anything, dive into these articles and see if you can build upon this discovery!

Continue reading “LDU Decoded: The Untold Tale Of LEGO Dimensions”

Close up of a Dutch etymology dictionary showing Esperanto, and a candle

Esperanto: The Language That Hoped To Unite The World

Christmas: a good time to broach a topic of hope. We’re talking Esperanto. This language that spurred the hope it one day could hack the barriers between people, eliminating war and miscommunication. The video below unpacks the history of this linguistic marvel. Esperanto was a constructed language dreamed up in 1887 by Ludwik Zamenhof, a Polish-Russian eye doctor with a knack for linguistics and great ideals. If you’re a little into linguistics yourself, you’ll sure know the name stems from the Latin sperare: to hope.

Inspired by the chaos of multilingual strife in his hometown, Zamenhof created Esperanto to unite humanity under a single, simple, easy-to-learn tongue. With just 16 grammar rules, modular word-building, and no pesky exceptions — looking at you, English — Esperanto was a linguistic hack ahead of its time.

But Esperanto wasn’t just a novelty—it almost became the lingua franca of diplomacy. In 1920, Iran proposed Esperanto as the official language of the League of Nations, but the French vetoed it, fearing their language’s global dominance was at risk. From there, Esperanto’s journey took a darker turn as both Nazi Germany and Stalinist Russia persecuted its speakers. Despite this, Esperanto persisted, surfacing in quirky corners of culture, from William Shatner’s Esperanto-only horror film Incubus to its inclusion on NASA’s Voyager Golden Record.

Fast-forward to the digital age: Esperanto is thriving on online learning platforms, where over a million learners explore its minimalist elegance. It appears at places in various editions of Grand Theft Auto. It has even inspired modern makers to create new constructed languages, like Loglan, Toki Pona, and even Klingon. Could Esperanto—or any reimagined language—rise again to unite us? For curious minds, watch the video here.

Continue reading “Esperanto: The Language That Hoped To Unite The World”

close up of a TI-84 Plus CE running custom software

Going Digital: Teaching A TI-84 Handwriting Recognition

You wouldn’t typically associate graphing calculators with artificial intelligence, but hacker [KermMartian] recently made it happen. The innovative project involved running a neural network directly on a TI-84 Plus CE to recognize handwritten digits. By using the MNIST dataset, a well-known collection of handwritten numbers, the calculator could identify digits in just 18 seconds. If you want to learn how, check out his full video on it here.

The project began with a proof of concept: running a convolutional neural network (CNN) on the calculator’s limited hardware, a TI-84 Plus CE with only 256 KB of memory and a 48 MHz processor. Despite these constraints, the neural network could train and make predictions. The key to success: optimizing the code, leveraging the calculator’s C programming tools, and offloading the heavy lifting to a computer for training. Once trained, the network could be transferred to the calculator for real-time inference. Not only did it run the digits from MNIST, but it also accepted input from a USB mouse, letting [KermMartian] draw digits directly on the screen.

While the calculator’s limited resources mean it can’t train the network in real-time, this project is a proof that, with enough ingenuity, even a small device can be used for something as complex as AI. It’s not just about power; it’s about resourcefulness. If you’re into unconventional projects, this is one for the books.

Continue reading “Going Digital: Teaching A TI-84 Handwriting Recognition”

students overlooking their rope-traversing robots

Crawler Challenge: Building Rope-Traversing Robots

Rope-climbing robots are the stuff of engineering dreams. As kids, didn’t we all clutter our family home with constructions of towers and strings – Meccano, or Lego – to have ziplines spanning entire rooms? Good for the youngsters of today, this has been included in school curricula. At the University of Illinois, the ME 370 students have been given the task of building a robot that can hang from a rope and walk across it—without damaging the rope. The final projects show not only how to approach tricky design problems, but also the creative solutions they stumbled upon.

Imagine a tiny, rope-climbing walker in your workshop—what could you create?

The project is full of opportunities for those thinking out of the box. It’s all about the balance between innovation and practicality: the students have to come up with a solution that can move at least 2 meters per minute, fits in a shoebox, and has some creative flair—no wheels allowed! The constraints provide an extra layer of challenge, but that’s where the fun lies. Some students use inverted walkers, others take on a more creature-like approach. The clever use of motors and batteries shows just how far simple tech can go when combined with a bit of engineering magic.

This project is a fantastic reminder that even small, seemingly simple design challenges can lead to fascinating creations. It invites us adults to play, and by that, we learn: a win-win situation. You can find the original article here, or grab some popcorn and watch the video below.

Continue reading “Crawler Challenge: Building Rope-Traversing Robots”

pcb with santa sleigh racing circuit

Rudolph’s Sleigh On A North Pole PCB

Each Christmas, [Adam Anderson], [Daniel Quach], [Johan Wheeler], and [Gustav Abrahamsson] (going by ‘the Janky Jingle Crew’)—set themselves the challenge of outdoing their previous creations. Last year’s CH32 Fireplace brought an animated LED fire to life with CH32V003 microcontrollers.

This year, they’ve gone a step further with the North Pole Circuit, a holiday project that combines magnetic propulsion, festive decorations, and a bit of engineering flair. Inspired by a miniature speedway based on Friedrich Gauss’ findings, the North Pole Circuit includes sleighs and reindeer that glide along a custom PCB track, a glowing village with flickering lights, and a buzzer to play Christmas tunes.

The propulsion system works using the Lorentz force, where vertical magnets interact with PCB traces to produce motion. A two-phase design, similar to a stepper motor, ensures smooth operation, while guard rails maintain stability on curves. A separate CH32V003 handles lighting and synchronized jingles, creating a cohesive festive display. As we mentioned in the article on their last year’s creation, going from a one-off to a full batch will make one rethink the joy of repetitive production. Consider the recipients of these tiny Christmas cards quite the lucky ones. We deem this little gift a keeper to put on display when Christmas rolls around again.

This annual tradition highlights the Crew’s knack for combining fun and engineering. Curious about the details or feeling inspired to create your own? Explore the full details and files on their GitHub.

Close up of a typewriter annex SMS-receiver

Back To The Future Of Texting: SMS On A Panasonic Typewriter

Among us Hackaday writers, there are quite a few enthusiasts for retro artifacts – and it gets even better when they’re combined in an unusual way. So, when we get a tip about a build like this by [Sam Christy], our hands sure start itching.

The story of this texting typewriter is one that beautifully blends nostalgia and modern technology. [Sam], an engineering teacher, transformed a Panasonic T36 typewriter into a device that can receive SMS messages, print them out, and even display the sender’s name and timestamp. For enthusiasts of retro gadgets, this creation bridges the gap between analog charm and digital convenience.

What makes [Sam]’s hack particularly exciting is its adaptability. By effectively replacing the original keyboard with an ESP32 microcontroller, he designed the setup to work with almost any electric typewriter. The project involves I2C communication, multiplexer circuits, and SMS management via Twilio. The paper feed uses an “infinite” roll of typing paper—something [Sam] humorously notes as outlasting magnetic tape for storage longevity.

Beyond receiving messages, [Sam] is working on features like replying to texts directly from the typewriter. For those still familiar with the art form of typing on a typewriter: how would you elegantly combine these old machines with modern technology? While you’re thinking, don’t overlook part two, which gives a deeper insight in the software behind this marvel!

Continue reading “Back To The Future Of Texting: SMS On A Panasonic Typewriter”