Automated Scanning For A Pile Of Documents

The Gado project is part of the Johns Hopkins University Center for African Studies. It has been tasked with archiving documents having to do with the East Baltimore Oral Histories Project. In short, they’ve got a pile of old pictures and documents that they want digitized but are not easily run through a page-fed scanner because they are fragile and not standard sizes. The rig seen above is an automated scanner which picks up a document from the black bin on the left, places it on the flat-bed scanner seen in the middle, and moves it to the black bin on the right once it has been scanned. It’s not fast, but it’s a cheap build (great if you’ve got a tight budgt) and it seems to work.

The machine is basically a three-axis CNC assembly. Above you can see one motor which lifts the lid of the scanner. You can’t see the document gripper in this image, but check the video after the break which shows the machine in action. A vacuum powered suction cup moves on a gantry (y-axis) but is also able to adjust its height (z-axis) and distance perpendicular to the gantry (x-axis) in order to grab one page at a time.

The pictures on the build log have captions to give you an idea of how this was built. We didn’t see any info about post-processing but let’s hope they have an auto-crop and auto-deskew filter in place to really make this automatic.

Continue reading “Automated Scanning For A Pile Of Documents”

Build A Standalone BASIC Interpreter

Here’s a photo of the circuit board for the Maximite, a BASIC interpreter that [Geoff] built. The design idea was sparked when he was exploring the possibilities of the PIC32 family of chips. [Geoff] wanted to write about the hardware for a magazine article but needed an actual product to really show it off.

The design can utilize one of two microprocessors, a PIC 32MX795F512H or 32MX695F512H. The 32-bit chip has more than enough power to emulate BASIC, and even allows for floating point calculations. It’s VGA compatible and has a jack for a standard PS/2 keyboard, which makes it a standalone device. You can store programs on an SD card, or it can be interfaced with a computer via the USB-B port that you see next to the power jack. The microprocessor is a surface mount chip, but the rest of the components are through-hole, making this an easy kit to assemble. But if you’re not afraid to etch your own 2-layered PCBs there is board artwork available in [Geoff’s] download package.

[Thanks Bill]

Reworking Ball Grid Array Circuit Board Components At Home

[Jack Gassett] is developing a new breakout board for an FPGA. The chip comes in a ball grid array (BGA) package which is notoriously difficult to solder reliably. Since he’s still in development, the test boards are being assembled in his basement. Of the first lot of four boards, only one is functional. So he’s setting out to rework the bad boards and we came along for the ride.

To reflow the surface mount components he picked up a cheap pancake griddle. The first thing [Jack] does is to heat up the board for about two minutes, then pluck off the FPGA and the FTDI chips using a vacuum tweezers. Next, the board gets a good cleaning with the help of a flux pen, some solder wick, and a regular soldering iron. Once clean, he hits the pads with solder paste from a syringe and begins the soldering process. BGA packages and the solder paste itself usually have manufacturer recommended time and temperature guidelines. [Jack] is following these profiles using the griddle’s temperature controller knob and the timer on an Android phone. In the video after the break you can see that he adjusts the timing based on gut reaction to what is going on with the solder. After cleaning up some solder bridges on the FTDI chip he tested it again and it works!

Continue reading “Reworking Ball Grid Array Circuit Board Components At Home”

Spokes? We Don’t Need No Stinking Spokes!

The Air Kraken is a bicycle for demon spawn. Well, that’s what it reminds us of anyway. [Gabriel Cain] took his inspiration from burning man and also had several reasons for building it, but the one that we just love to hear is ‘because I can’.

The over-grown tricycle built for two is more than just some bicycle frames welded together. [Gabriel] built the wheel set himself using some very interesting methods. We believe the hubs themselves are actually automobile rims drilled to accept eye bolts. Instead of rigid spokes, a network of steel cable keeps the rims, made from plastic culvert pipe, centered. For grip, mountain bike tires were cut into pieces and screwed onto the pipe parts. The whole shebang is steered using a ship’s wheel (not pictured above) to turn the small wheel located behind the two riders.

After the break we’ve embedded a video of the vehicle in motion. It is the second of three videos that have been posted so far, with the other two walking through how [Gabriel] solved the design challenges facing him during the build.

[Gabriel] sent us a link after seeing the quadbike post on Monday. Don’t keep your projects to yourself, make sure to send us a tip and we’ll make sure to keep posting about them.

Continue reading “Spokes? We Don’t Need No Stinking Spokes!”

Photo Hardware That Automatically Produces Rotating GIFs

[Fergus Kendall’s] company is making development and breakout boards targeting electronic hobbyists. As with any endeavor that involves selling something, they need marketing. It sounds like [Fergus] was put in charge of getting some nice animated 360 degree images of each component. Instead of going through the drudgery of snapping frames by hand in a stop-motion-style, he whipped up a rotating platform that does the work for him.

The brain of the operation is a Boobie Board, a microcontroller breakout board that is one of their products. It controls a stepper motor attached to the cardboard platform via a quartet of power transistors. [Fergus] mentions in passing that their digital camera didn’t have a connection for a shutter trigger attachment. But they modded it to make things work. There’s no detail on that part of the hack but we’d wager that they soldered a transistor to the contacts for the shutter button.

The stepper motor has 48 steps, so the hardware is programmed to take 48 pictures which become the frames of an animated GIF – embedded after the break – to show off the product.

Continue reading “Photo Hardware That Automatically Produces Rotating GIFs”

Photographing Near-space Objects We’re Not Supposed To Know About

[Thierry Legault] doesn’t just look up at the stars, the uses a motorized telescope base of his own making to track and photograph secret objects orbiting the earth. What do we mean by ‘secret objects’? Spy stuff, of course.

Last month he captured some video of the X-37B, an unmanned and secretive reusable spacecraft (read: spy shuttle) which is operated by the United States Air Force. That was back on the 21st of May but a few nights later he also saw the USA-186, an optical reconnaissance (Keyhole) satellite.

After trying to cope with manual tracking using the RC control seen above [Thierry] set out to upgrade his equipment. He ended up designing his own software package (and then released it as freeware) to automatically track the trajectory of orbiting objects. He uses a second telescope to locate the object, then dials it in with the bigger telescope. Once in frame, the software takes over.

[Wired via Dangerous Prototypes]

The Passing Of Bob Pease

We are saddened by the recent passing of [Bob Pease]. You may not be familiar with the man, but his work has touched your lives in more ways than you can count. As an electronics engineer who specialized in analog components he was responsible for hardware that made some of the electronics in your life possible, and designed components that you’ve probably used if you dabble in electronic design.

EDN has a lengthy obituary celebrating his life and accomplishments. [Bob] was part of the 1961 graduating class at MIT. He started his career designing tube amplifiers before finding his way to a position at National Semiconductor about fifteen years later. Throughout his career he worked to promote education about analog electronics both through written text, and more recently as the host of Analog by Design, an online video program where a panel of experts discuss the ins and outs of electronics.

[Bob] was killed in an automobile accident on June 18th at the age of 70.

[via Make]