A suitcase made of two rectangular plastic crates latched together sits prone on a concrete floor. The top shell is a beige-ish grey with a navy check and the word "JerseyMaid" on it updside down. The navy bottom crate is navy with the letters "lsen" in large cursive font ant the letters "ORATION" in smaller print below it. Much of the text is covered by a large latch and a power tool battery mount. Bright pink tape affixes a blue tarp skirt to the bottom of the hover suitcase.

Hovercraft Suitcase Gives Your Luggage A Smooth Ride

The wheels on roller suitcases are one of their primary failure points. After the destruction of the wheel mount on her DIY suitcase, [Laura Kampf] wondered if it would be better to dispense with wheels altogether.

To give her suitcase a lift, [Kampf] decided to turn it into a hovercraft so it couldn’t be stopped by pavement or puddles. The first task was finding an appropriate fan, and a compact leaf blower donated it’s body to makerdom for the project. After reducing the blower to it’s constituent components and finding a secret turbo switch, work began on the momentum curtain.

“Nose-holing” the arrangement and size of the holes to pipe air through the stapled tarp and tape skirt seemed to be the bulk of the trial-and-error in this one. Based on other hovercraft designs [Kampf] found, keeping the holes near the center of the inflated portion gave better lift. In the end, the carry-on is able to lift a decent amount even on its lowest setting, resulting in a suitcase that is “not embarrassing” for travel. No word yet on what TSA thinks.

If you’re looking for another unexpected lift off, how about a full-sized flying Delorean replica? We’ve also covered some of the reasons why we don’t see more of these all terrain wonders.

Continue reading “Hovercraft Suitcase Gives Your Luggage A Smooth Ride”

A man holds a license plate in front of a black pickup (F-150 Lightning) tailgate. It is a novelty Georgia plate with the designation P00-5000. There are specks of black superimposed over the plate with a transparent sticker, giving it the appearance of digital mud in black.

A Deep Dive On Creepy Cameras

George Orwell might’ve predicted the surveillance state, but it’s still surprising how many entities took 1984 as a how-to manual instead of a cautionary tale. [Benn Jordan] decided to take a closer look at the creepy cameras invading our public spaces and how to circumvent them.

[Jordan] starts us off with an overview of how machine learning “AI” is used Automated License Plate Reader (ALPR) cameras and some of the history behind their usage in the United States. Basically, when you drive by one of these cameras, an ” image segmentation model or something similar” detects the license plate and then runs optical character recognition (OCR) on the plate contents. It will also catalog any bumper stickers with the make and model of the car for a pretty good guess of it being your vehicle, even if the OCR isn’t 100% on the exact plate sequence.

Where the video gets really interesting is when [Jordan] starts disassembling, building, and designing countermeasures to these systems. We get a teardown of a Motorola ALPR for in-vehicle use that is better at being closed hardware than it is at reading license plates, and [Jordan] uses a Raspberry Pi 5, a Halo AI board, and You Only Look Once (YOLO) recognition software to build a “computer vision system that’s much more accurate than anything on the market for law enforcement” for $250.

[Jordan] was able to develop a transparent sticker that renders a license plate unreadable to the ALPR but still plainly visible to a human observer. What’s interesting is that depending on the pattern, the system could read it as either an incorrect alphanumeric sequence or miss detecting the license plate entirely. It turns out, filtering all the rectangles in the world to find just license plates is a tricky problem if you’re a computer. You can find the code on his Github, if you want to take a gander.

You’ve probably heard about using IR LEDs to confuse security cameras, but what about yarn? If you’re looking for more artistic uses for AI image processing, how about this camera that only takes nudes or this one that generates a picture based on geographic data?

Continue reading “A Deep Dive On Creepy Cameras”

An image of a pigeon on the left and a breakdown of six of the different kind of feathers on the bird. The bird's right wing is white with black dots and has an arrow pointing to it saying, "Developing wing with feather buds." The left wing is grey with one feather highlighted in pink with the text "Adult wing with feathers" at the end of an arrow pointing to it. The six feather types on the right side of the image are flight feathers, illustrated in pink with the text "enable flight, support aerodynamic loads, morph depending on flying style, building blocks for wing planaform." In green, we have tail feathers and the text "Maneuverability and controlability." In blue are the contour feathers, accompanied by the text, "streamline, camouflage, and sexual display. Found above filoplumes and semiplumes." A black floofy branched structure shows us the downy feathers next to the text "thermal insulation." Filoplumes and semiplumes look to be both thin and bushy feathers in black with the text "Sense underlying feathers, found above downy feathers." Finally, we have a black, stick-like bristle feather with the text "Protect face and eyes, sense surroundings."

Feathers Are Fantastic, But Flummoxing For Engineers

Birds are pretty amazing creatures, and one of the most amazing things about them and their non-avian predecessors are feathers. Engineers and scientists are finding inspiration from them in surprising ways.

The light weight and high strength of feathers has inspired those who look to soar the skies, dating back at least as far as Ancient Greece, but the multifunctional nature of these marvels has led to advancements in photonics, thermal regulation, and acoustics. The water repellency of feathers has also led to interesting new applications in both food safety and water desalination beyond the obvious water repellent clothing.

Sebastian Hendrickx-Rodriguez, the lead researcher on a new paper about the structure of bird feathers states, “Our first instinct as engineers is often to change the material chemistry,” but feathers are made in thousands of varieties to achieve different advantageous outcomes from a single material, keratin. Being biological in nature also means feathers have a degree of self repair that human-made materials can only dream of. For now, some researchers are building biohybrid devices with real bird feathers, but as we continue our march toward manufacturing at smaller and smaller scales, perhaps our robots will sprout wings of their own. Evolution has a several billion year head start, so we may need to be a little patient with researchers.

Some birds really don’t appreciate Big Brother any more than we do. If you’re looking for some feathery inspiration for your next flying machine, how about covert feathers. And we’d be remiss not to look back at the Take Flight With Feather Contest that focused on the Adafruit board with the same name.

A set of three linear actuators set atop a green with yellow grid cutting mat. The electric actuator on the top of the image is silver and has a squarish tube. It is slender compared to the other two. A black, hydraulic actuator sits in the middle and is the largest of the three. A silver pneumatic actuator at the bottom of the image is the middle sized unit.

Linear Actuators 101

Linear actuators are a great help when you’re moving something along a single axis, but with so many options, how do you decide? [Jeremy Fielding] walks us through some of the high level tradeoffs of using one type of actuator over another.

There are three main types of linear actuator available to the maker: hydraulic, pneumatic, and electric. Both the hydraulic and pneumatic types move a cylinder with an attached rod through a tube using pressure applied to either side of the cylinder. [Fielding] explains how the pushing force will be greater than the pulling force on these actuators since the rod reduces the available surface area on the cylinder when pulling the rod back into the actuator.

Electric actuators typically use an electric motor to drive a screw that moves the rod in and out. Unsurprisingly, the electric actuator is quieter and more precise than its fluid-driven counterparts. Pneumatic wins out when you want something fast and without a mess if a leak happens. Hydraulics can be driven to higher pressures and are typically best when power is the primary concern which is why we see them in construction equipment.

You can DIY your own linear actuators, we’ve seen tubular stepper motors, and even a linear actuator inspired by muscles.

Continue reading “Linear Actuators 101”

A hand holds a charcoal-colored rectangle with a black and white screen in taking up most of its face. A bulleted list of items are displayed: "Start work on new blog, Update eSticky FW, Start working on eSticky PCB, New enclosure for eSticky, Buy 18650 battery, Buy 3DP extruder anycubic, FW Update Sigma 18-35."

ESticky Is A Paperless Post-It

E-paper screens have opened up a wide variety of novel use cases that just wouldn’t work with the higher power draw of an LCD. [gokux] thought it would be perfect for a digital sticky note.

Using a Waveshare 2.9″ e-paper display hooked up to a Seeed Studio XIAO ESP32C3, a battery, and a switch all inside the 3D printed enclosure, the part count on this is about as simple as it gets. Once everything is soldered together and programmed, you get a nifty little display that can hold some of your thoughts without having to reopen an app to get to them.

Access is currently provided via a web page, and there are a few minor hiccups like text alignment and image upload support. This project is open source, so [gokux] has expressed interest in anyone wanting to help refine the concept. We think it might be nice to add a magnet on the back for an easier way to actually stick to things.

If you prefer a different way to use electricity for a sticky note, why not do it at 2,000 V? If that’s not your jam, how about a plotter that writes your label or message on masking tape?

Continue reading “ESticky Is A Paperless Post-It”

A photo of a large warehouse with many skylights and windows near the roof. In the middle of the image extending out into the distance are hundreds of grey refractory bricks stacked on top of a smaller set of brown bricks stacked on top of pallets. There appear to be rails on the floor of the warehouse and small dollies underneath the pallets.

Thermal Batteries For Lower Carbon Industrial Processes

Heating things up is one of the biggest sources of cost and emissions for many industrial processes we take for granted. Most of these factories are running around the clock so they don’t have to waste energy cooling off and heating things back up, so how can you match this 24/7 cycle to the intermittent energy provided by renewables? This MIT spin-off thinks one solution is thermal storage refractory bricks.

Electrified Thermal Solutions takes the relatively simple technology of refractory brick to the next level. For the uninitiated, refractory bricks are typically ceramics with a huge amount of porosity to give them a combination of high thermal tolerance and very good insulating properties. A number of materials processes use them to maximize the use of the available heat energy.

While the exact composition is likely proprietary, the founder’s Ph.D. thesis tells us the bricks are likely a doped chromia (chrome oxide) composition that creates heat in the brick when electrical energy is applied. Stacked bricks can conduct enough current for the whole stack to heat up without need for additional connections. Since these bricks are thermally insulating, they can time shift the energy from solar or wind energy and even out the load. This will reduce emissions and cost as well. If factories need to pipe additional grid power, it would happen at off-peak hours instead of relying on the fluctuating and increasing costs associated with fossil fuels.

If you want to implement thermal storage on a smaller scale, we’ve seen sand batteries and storing heat from wind with water or other fluids.

Antiviral PPE For The Next Pandemic

In what sounds like the plot from a sci-fi movie, scientists have isolated an incredibly rare immune mutation to create a universal antiviral treatment.

Only present in a few dozen people worldwide, ISG15 immunodeficiency causes people to be more susceptible to certain bacterial illnesses, but it also grants the people with this condition immunity to known viruses. Researchers think that the constant, mild inflammation these individuals experience is at the root of the immunoresponse.

Where things get really interesting is how the researchers have found a way to stimulate protein production of the most beneficial 10 proteins of the 60 created by the natural mutation using 10 mRNA sequences inside a lipid nanoparticle. Lead researcher [Dusan Bogunovic] says “we have yet to find a virus that can break through the therapy’s defenses.” Researchers hope the treatment can be administered to first responders as a sort of biological Personal protective equipment (PPE) against the next pandemic since it would likely work against unknown viruses before new targeted vaccines could be developed.

Hamsters and mice were given this treatment via nasal drip, but how about intranasal vaccines when it comes time for human trials? If you want a short history of viruses or to learn how smartwatches could help flatten the curve for the next pandemic, we’ve got you covered.