Shipping Your Illicit Software On Launch Hardware

In the course of a career, you may run up against projects that get cancelled, especially those that are interesting, but deemed unprofitable in the eyes of the corporate overlords. Most people would move, but [Ron Avitzur] just couldn’t let it go.

In 1993, in the midst of the transition to PowerPC, [Avitzur]’s employer let him go as the project they were contracted to perform for Apple was canceled. He had been working on a graphing calculator to show off the capabilities of the new system. Finding his badge still allowed him access to the building, he “just kept showing up.”

[Avitzur] continued working until Apple Facilities caught onto his use of an abandoned office with another former contractor, [Greg Robbins], and their badges were removed from the system. Not the type to give up, they tailgated other engineers into the building to a different empty office to continue their work. (If you’ve read Kevin Mitnick‘s Ghost in the Wires, you’ll remember this is one of the most effective ways to gain unauthorized access to a building.)

We’ll let [Avitzur] tell you the rest, but suffice it to say, this story has a number of twists and turns to it. We suspect it certainly isn’t the typical way a piece of software gets included on the device from the factory.

Looking for more computing history? How about a short documentary on the Aiken computers, or a Hack Chat on how to preserve that history?

[Thanks to Stephen for the tip via the Retrocomputing Forum!]

A clipping of the "3D Printing & Modelling" skill tree. An arrow pointing up says "Advanced" and there are several hexagons for various skills on the page including blanks for writing in your own options and some of the more advanced skills like "Print in Nylon or ASA material"

Maker Skill Trees Help You Level Up Your Craft

Hacking and making are great fun due to their open ended nature, but being able to try anything can make the task of selecting your next project daunting. [Steph Piper] is here with her Maker Skill Trees to give you a map to leveling up your skills.

Featuring a grid of 73 hexagonal tiles per discipline, there’s plenty of inspiration for what to tackle next in your journey. The trees start with the basics at the bottom and progressively move up in difficulty as you move up the page. With over 50 trees to select from (so far), you can probably find something to help you become better at anything from 3D printing and modeling to entrepreneurship or woodworking.

Despite being spoiled for choice, if you’re disappointed there’s no tree for your particular interest (underwater basket weaving?), you can roll your own with the provided template and submit it for inclusion in the repository.

Want to get a jump on an AI Skill Tree? Try out these AI courses. Maybe you could use these to market yourself to potential employers or feel confident enough to strike out on your own?

[Thanks to Courtney for the tip!]

Continue reading “Maker Skill Trees Help You Level Up Your Craft”

A person holds a glass jar in their left hand and a spark plug in their right atop a white cylindrical canister. The jar and canister are sitting on top of a green cutting mat.

Spark Plug Becomes Glass Cutter

Sometimes a hack doesn’t need to be rocket science to be useful. Take for instance [MofigoDIY] using an old spark plug to build a glass cutter.

Sure, going to grab a glass cutter at the hardware store might be easy, but there’s something satisfying about going the DIY route. [MofigoDIY]’s version of this classic hack is a bit more refined than the quick and dirty route of smashing the spark plug alumina and hot gluing it into a tube.

After using a rotary tool to cut off the threads and expose the narrow part of the ceramic, [MofigoDIY] grinds it down to a fine point. This lets the spark plug itself become the handle, so you don’t need any additional parts to make the cutter. Toward the end of the video, a heated wire is used to break a glass jar apart after it was scored which might be of interest even if you already have a glass cutter. Once you’re finished making your glass cutter, make sure you dispose of any chips left over, since ceramic spark plug fragments are considered burglary tools in some areas.

Would you rather just build the glass up additively? How about using a laser cutter to sinter glass or 3D printing fused silica using a polymerized composite precursor?

Continue reading “Spark Plug Becomes Glass Cutter”

Twelve pink tentacles are wrapped around a small, green succulent plant. The leaves seem relatively undisturbed. They are dangling from brass and white plastic pressure fittings attached to a brass circle.

Tentacle Robot Wants To Hold You Gently

Human hands are remarkable pieces of machinery, so it’s no wonder many robots are designed after their creators. The amount of computation required to properly attenuate the grip strength and position of a hand is no joke though, so what if you took a tentacular approach to grabbing things instead?

Inspired by ocean creatures, researchers found that by using a set of pneumatically-controlled tentacles, they could grasp irregular objects reliably and gently without having to faff about with machine learning or oodles of sensors. The tentacles can wrap around the object itself or intertwine with each other to encase parts of an object in its gentle grasp.

The basic component of the device is 12 sections “slender elastomeric filament” which dangle at gauge pressure, but begin to curl as pressure is applied up to 172 kPa. All of the 300 mm long segments run on the same pressure source and are the same size, but adding multiple sized filaments or pressure sources might be useful for certain applications.

We wonder how it would do feeding a fire or loading a LEGO train with candy? We also have covered how to build mechanical tentacles and soft robots, if that’s more your thing.

Continue reading “Tentacle Robot Wants To Hold You Gently”

An amber on black interface on a green reproduction Game Boy screen. It has the FM station 88.9 in large letters in the middle of the display and "Ice Cream (Pay Phone) by Black Pumas" displayed in a box below. A volume indicator is on the left side of the tuner numbers and various status icons are along the top of the screen. A paper cutout of an orange is next to the Game Boy on a piece of paper with the words "Orange FM Prototype" written underneath.

Orange FM Brings Radio To The GameBoy

We’ve all been there. You left your Walkman at home and only have your trusty Game Boy. You want to take a break and just listen to some tunes. What to do? [orangeglo] has the answer now with the Orange FM cartridge.

This prototype cart features an onboard antenna or can also use the 3.5 mm headphone/antenna port on the cartridge to boost reception with either a dedicated antenna or a set of headphones. Frequencies supported are 64 – 108 Mhz, and spacing can be set for 100 or 200 kHz to accomodate most FM broadcasts setups around the world.

Older Game Boys can support audio through the device itself, but Advances will need to use the audio port on the cartridge. The Super Game Boy can pipe audio to your TV though, which seems like a delightfully Rube Goldberg-ian way to listen to the radio. Did we mention it also supports RDS, so you’ll know what that catchy tune is? Try that FM Walkman!

Can’t decide between this and your other carts? Try this revolving multi-cart solution. Have a Game Boy that needs some restoration? If it’s due to electrolyte damage, maybe start here?

Continue reading “Orange FM Brings Radio To The GameBoy”

An image of a grey plastic carrying case, approximately the size of an A5 notebook. Inside are darker grey felt lined cubbies with a mirror, piece of glass, a viewfinder, and various small printed parts to assemble a camera lucida.

Camera Lucida – Drawing Better Like It’s 1807

As the debate rages on about the value of AI-generated art, [Chris Borge] printed his own version of another technology that’s been the subject of debate about what constitutes real art. Meet the camera lucida.

Developed in the early part of the nineteenth century by [William Hyde Wollaston], the camera lucida is a seemingly simple device. Using a prism or a mirror and piece of glass, it allows a person to see the world overlaid onto their drawing surface. This moves details like proportions and shading directly to the paper instead of requiring an intermediary step in the artist’s memory. Of course, nothing is a substitute for practice and skill. [Professor Pablo Garcia] relates a story in the video about how [Henry Fox Talbot] was unsatisfied with his drawings made using the device, and how this experience was instrumental in his later photographic experiments.

[Borge]’s own contribution to the camera lucida is a portable version that you can print yourself and assemble for about $20. Featuring a snazzy case that holds all the components nice and snug on laser cut felt, he wanted a version that could go in the field and not require a table. The case also acts as a stand for the camera to sit at an appropriate height so he can sketch landscapes in his lap while out and about.

Interested in more drawing-related hacks? How about this sand drawing bot or some Truly Terrible Dimensioned Drawings?

Continue reading “Camera Lucida – Drawing Better Like It’s 1807”

An image of an orange, translucent glowing quartz rod. Thermocouples can be seen at intervals along the rod looking in.

Industrial Solar Heat Hits 1000˚C

While electricity generation has been the star of the energy transition show, about half of the world’s energy consumption is to make heat. Many industrial processes rely on fossil fuels to reach high temps right now, but researchers at ETH Zurich have found a new way to crank up the heat with a solar thermal trap. [via SciTechDaily]

Heating water for showers or radiant floor systems in homes is old hat now, but industrial application of solar power has been few and far between. Part of the issue has been achieving high enough temperatures. Opaque absorbers can only ever get as hot as the incident surface where the sun hits them, but some translucent materials, like quartz can form thermal traps.

In a thermal trap, “it is possible to achieve temperatures that are higher in the bulk of the material than at the surface exposed to solar radiation.” In the study, the researchers were able to get a 450˚C surface to produce 1,050˚C interior temperature in the 300 mm long quartz rod. The system does rely on concentrated solar power, 135 suns-worth for this study, but mirror and lens systems for solar concentration already exist due to the aforementioned electrical power generation.

This isn’t the only time we’ve seen someone smelting on sunlight alone, and you can always do it less directly by using a hydrogen intermediary. If you’re wanting a more domestic-level of heat, why not try the wind if the sun doesn’t shine much in your neighborhood?