Miniature Motorized RC Car Is Massively Impressive

Small is often subjective. For example, a school bus is small compared to an Airbus A380. But other things are just small all on their own and need no comparison to make the point. Such is the case with this micro RC car in the video below the break. It’s an RC model of the Smart Car, that when compared to other vehicles on the road, is quite diminutive, both subjectively and absolutely. But the outward appearance of [diorama111]’s project only tells half the story.

Starting out as a static display model, [diorama111] fully disassembled the 1/87 scale Smart Car and got to work. Fully proportional steering is attained with a very, very small stepper motor that drives custom knuckles attached to handmade suspension. They are works of art in their own right.

Do your projects need tweezers for assembly?

Drive is supplied by another small stepper motor. If [diorama111] had stopped there, it would have been every bit as noteworthy to see a 1/87 Smart Car doing figure eights around small bottles of model paint. Instead, [diorama111] kept going! The car has working turn signals, brake lights (including the 3rd taillight in the back window!) and headlights. There is even a function for hazard lights.

The electronics are all hand built using enameled wire and SMD components on perf board, and are a study in miniaturization all their own. An ATtiny processor seems right at home in this design. We admire [diorama111]s steady hands and patience to build such a small RC car, never mind one with such fine attention paid to all the details.

If downsized hacks like this float your thimble-sized boat, you might also appreciate this precious little PDP-11 and terminal.

Continue reading “Miniature Motorized RC Car Is Massively Impressive”

Antique Beat Box Showcases 1950’s Engineering Prowess

Before you could just put a drum machine app on your phone, or fire up Garage Band, there were breakthroughs like the Roland 808 drum machine. But that’s not where it all started. In 1959 a company called Wurlitzer (known for things like juke boxes, pianos, and giant pipe organs) produced a new device that had musicians worried it would put drummers out of a job: The 1959 Wurlitzer Sideman. And in the video below the break, we have the joy of watching [LOOK MUM NO COMPUTER] open up, explain, and play one of these marvelous machines.

Can you spot the early circuit sculpture?

It’s noteworthy that in 1959, almost none of the advancements we take for granted had made it out of the laboratory. Transistors? Nope. Integrated Circuits? Definitely not. What does that leave us with? Vacuum tubes (Valves for those across the pond), resistors, capacitors, relays, and… motors? Yep. Motors.

The unit is artfully constructed, and we mean that quite literally- the build was clearly done with care and it is easy to see an early example of circuit sculpture around the 3 minute mark. Electromechanical mechanisms take on tasks that we’d probably use a 555 for these days, but for any of you working on mechanical projects, take note: Wurlitzer really knew what they were doing, and there are some excellent examples of mechanical and electrical engineering throughout this primordial beat box.

If you move to the beat of interesting drum machines, you might enjoy this Teensy based Open Source drum machine that you can build. No tubes required!

Continue reading “Antique Beat Box Showcases 1950’s Engineering Prowess”

Internal Combustion Torque Monster Has Great Impact

Once the domain of automotive repair shops and serious hobbyists with air compressors, the impact driver so famously used to remove and install wheel lug nuts and other Big Fasteners with just a squeeze of the trigger is more accessible than ever. Thanks to Lithium Ion batteries and powerful and compact brushless motors, you can now buy a reasonably powerful and torquey impact driver for a relatively low price- no air compressor needed! But what if you relish the thought of a noisy, unwieldy and unnecessarily loud torque monster? Then the video below the break by [Torque Test Channel] is just what you need!

Now, this is Hackaday, so we don’t have to go into detail about why a person might want to rip out the electric motor and adapt a 60cc 2 stroke engine in its place. Of course that’s the obvious choice. But [Torque Test Channel] isn’t just mucking about for the fun of it. No, they’re having their fun, experimenting with internal combustion engines in odd places before they are banned by 2024 in California. Now, we’re not sure if the ban includes these exact types of engines- but who needs details when you have an impact driver that can change semi tires like a NASCAR pit crew.

Looking like an overpowered weapon from a first person shoot’em up game, [Torque Test Channel]’s modified Milwaukee tests well after some modifications. Be sure to watch the video to see how it performs against an electric tool that’s even larger than itself. There are graphs, charts, and an explanation of what can be done to make even more power in the future. We’re looking forward to it!

What’s that you say? You don’t have a two stroke engine sitting around waiting to be swapped into ridiculous gadgets? Look no further than your local fridge compressor and be ready to burn some hours getting it running.

Continue reading “Internal Combustion Torque Monster Has Great Impact”

Electric Jet Engine Uses 3D Printed Compressor, Skips The Turbine Altogether.

Turbojet engines are an incredible piece of 20th century engineering that except for some edge cases, have mostly been replaced by Turbofans. Still, even the most basic early designs were groundbreaking in their time. Material science was applied to make them more reliable, more powerful, and lighter. But all of those incredible advances go completely out the window when you’re [Joel] of [Integza], and you prefer to build your internal combustion engines using repurposed butane canisters and 3d printed parts as you see in the video below the break.

Emoscopes, CC BY-SA 3.0 via Wikimedia Commons

To understand [Integza]’s engine, a quick explanation of Turbojet engines is helpful. Just like any other internal combustion engine, air is compressed, fuel is burned, and the reaction produces work. In a turbojet, a compressor compresses air. Fuel is added in a combustor and ignited, and the expanding exhaust drives a turbine that in turn drives the compressor since both are attached to the same shaft. Exhaust whose energy isn’t spent in turning the turbine is expelled and produces thrust, which propels the engine and the vehicle it’s attached to in the opposite direction. Simple, right? Right! Until the 3d printer comes in.

Sadly for 3d printed parts, they are made of plastic. Last we checked, plastic isn’t metal, and so 3d printing a turbine to give the extremely hot exhaust something turn just isn’t going to work. But what if you just skipped the whole turbine part, and powered the compressor with an electric motor? And instead of using an axial compressor with tons of tiny blades that would likely be impossible to 3d print with enough strength, you went with a sturdy, easy to print centrifugal compressor? Of course, that’s exactly what [Integza] did, or we wouldn’t be talking about it. The results are fantastic, especially considering that the entire machine was built with 3d printing and a home made spot welder.

If you want to build a full jet turbine, we won’t say it’s easy, but you might appreciate this jet turbine whose components include a toilet paper holder as proof that once a technology is understood, it can be built in the worst ways possible and still work. Sort of.

Continue reading “Electric Jet Engine Uses 3D Printed Compressor, Skips The Turbine Altogether.”

Cascade Failures, Computer Problems, And Ohms Law: Understanding The Northeast Blackout Of 2003

We’ve all experienced power outages of some kind, be it a breaker tripping at an inconvenient time to a storm causing a lack of separation between a tree and a power line. The impact is generally localized and rarely is there a loss of life, though it can happen. But in the video below the break, [Grady] of Practical Engineering breaks down the Northeast Blackout of 2003, the largest power failure ever experienced in North America. Power was out for days in some cases, and almost 100 deaths were attributed to the loss of electricity.

[Grady] goes into a good amount of detail regarding the monitoring systems, software simulation, and contingency planning that goes into operating a large scale power grid. The video explains how inductive loads cause reactance and how the effect exacerbated an already complex problem. Don’t know what inductive loads and reactance are? That’s okay, the video explains it quite well, and it gives an excellent basis for understanding AC electronics and even RF electronic theories surrounding inductance, capacitance, and reactance.

So, what caused the actual outage? The complex cascade failure is explained step by step, and the video is certainly worth the watch, even if you’re already familiar with the event.

It would be irresponsible to bring up the 2003 outage without talking about the Texas ERCOT outages just one year ago– an article whose comments section nearly caused a blackout at the Hackaday Data Center!

Continue reading “Cascade Failures, Computer Problems, And Ohms Law: Understanding The Northeast Blackout Of 2003”

Grocery Store Rocket Fuel: Don’t Try This At Home!

It seems like whenever the topic of rocket science comes up, the conversation quickly shifts to that of rocket fuels. As discussed in the excellent [Scott Manley] video below the break, there are many rocket fuels that can be found in some way, state, or form at your local grocery or liquor store. The video itself is a reaction to some college students in Utah who caused an evacuation when the rocket fuel they were cooking up exploded.

[Scott] himself theorizes that the fuel they were cooking was Rocket Candy, a volatile mix of sugar and potassium nitrate that is known to go Kaboom on occasion. And as it turns out, the combination might not even be legal in your area because as much as it can be used as rocket fuel, it can also be used for other things that go boom.

So, what else at your local megamart can be used to get to orbit? [Scott] talks about different kinds of alcohols, gasses, cleaners- all things that can be used as rocket fuel. He also talks about all of the solid reasons you don’t want to do this at home.

If this type of things gets your molecules excited, you might enjoy a bit we posted recently about using another grocery store staple to save Martian colonists from being held back by gravity.

Rotary Valve Engine Gets A Second Chance, Smokes The Competition

It’s a dedicated hacker who has the patience to build an engine from scratch. And it’s a borderline obsessed hacker who does it twice. [Meanwhile In the Garage] is of the second ilk, and in the video below the break, he takes a failed engine design and musters up the oomph to get it running.

The whole build began with an idea for a different kind of intake and exhaust valve. [Meanwhile In the Garage] dreamed up a design that does away with the traditional poppet valve. Instead of valves that open by being pushed away from their seat by a camshaft, this design uses a cylinder that is scooped so that as it rotates, its ports are exposed to either the intake or the exhaust.

Four Stroke Cycle with Poppet valves. Courtesy Wikipedia, CC BY-SA 3.0

During the compression stroke, the valve cylinder becomes part of the combustion chamber, with both ports facing away from the piston. If you read the comments, you’ll find that multiple people have come up with the idea through the years. With his mill, lathe, and know-how, [Meanwhile In the Garage] made it happen. But not without some trouble.

The first iteration resisted all valiant attempts at getting it started. The hour-long video preceding this one ended up in a no-start. Despite his beautiful machine work and a well thought out design, it wasn’t to be. Fire came from the engine either through the exhaust or the carburetor, but it never ran. In this version, several parts have been re-worked and the effect is immediate! The engine fired up nicely and even seems to rev up pretty well. Being a first-generation prototype, it lacks seals and other fancy parts to keep oil out of the combustion chamber. Normal engine oil has been added to the fuel as a precaution as well. The fact that it smokes quite badly isn’t a surprise and only proves that the design will benefit from another iteration. Isn’t that true for most prototypes, though?

Home-grown engines aren’t a new thing at Hackaday, and one of This Author’s favorite jet turbines used a toilet paper holder. Yes, really.  Thanks to [Keith] for the Tip!

Continue reading “Rotary Valve Engine Gets A Second Chance, Smokes The Competition”