3D Printed Newtonian Telescope Has Stunning Looks, Hadley Breaks The Bank

Have you ever considered building your own telescope? Such a project can be daunting, especially if you grind your own mirrors. But with a 3D printer, hardware store bits and bobs, and some inexpensive pre-made mirrors, you too can be the proud owner of your very own own Hadley — a 114/900mm Newtonian Telescope that can cost less than $150 USD to build! Check out the video below the break to get a good scope on the project.

Astrophotography is possible with the Hadley

The creator’s stated goal is to “make an attractive alternative to the shoddy, hard to use “hobby-killer” scopes in the $100-200 range“, and we have to say that it appears to have met its goal admirably. The optics — the most complex part of any build — can be easily purchased online, and the rest of the parts are available at your local hardware store.

While the original build was provided in Imperial measures, a metric version is now available. Various contributors have created a rich ecosystem of accessories and alternative versions of various parts, all in the interest of making the telescope more useful. Things like tripod mounts, phone mounts (for use with your favorite star chart app) and more are only a click away. The only real question to answer is “What color filament will I use?”

Of course, sometimes light waves can get a bit long in the tooth, and for those cases you’ll want a radio telescope, which can also be DIY’d thanks to the availability of satellite dishes and SDR dongles!

Continue reading “3D Printed Newtonian Telescope Has Stunning Looks, Hadley Breaks The Bank”

Amateur Rocket Aims For The Kármán Line, One Launch At A Time

When it comes to high-powered rocketry, [BPS.space] has the unique distinction of being the first to propulsively land a solid-fueled model rocket. How could he top that? Well, we’re talking about actual rocket science here, and the only way is up! All the way up to the Kármán line: 100 km. How’s he going to get there? That’s the subject of the video below the break.

Getting to space is notoriously difficult because it’s impossible to fully test for the environment in which a rocket will be flying. But there is quite a lot that can be tested, and those tests are the purpose of a rocket that [Joe] at [BPS.space] calls Avalanche. Starting with a known, simple design as a test bed, numerous launches are planned in order to iterate quickly through several launches- three of which are covered just in this video.

The goal with Avalanche isn’t to get to the Kármán line, but to learn the lessons needed to build a far bigger rocket that will. A home-brewed guidance system, a gimballed spin-stabilized 4K camera, and the descent system are among those being tested and perfected.

Of course, you don’t have to be a rocket scientist to have fun with prototyping. Sometimes you just want to 3D print a detonation engine, no matter how long it won’t last. Why not?

Continue reading “Amateur Rocket Aims For The Kármán Line, One Launch At A Time”

Rubber Band Behemoth Winds Its Way Toward World Record

Egged on by adoring fans who demanded more aircraft videos, [ProjectAir] has decided to break the world record for rubber band powered aircraft… despite having never built a rubber band powered aircraft. Why rubber band power?

Before little two stroke motors became affordable, and long before electric motors and batteries were remotely possible, there weren’t a lot of options for powering your model aircraft. One technology that really took off was that of rubber band power. By winding a rubber band, it could store enough energy to turn a propeller for a short duration. With a 10 foot model taking the current world record, as you can see in the video below the break [ProjectAir] decided to see if he could beat it.

Rubber Band Powered Free Flight c1915 By Unknown author

Starting with a successful free flight aircraft made of foam board, [ProjectAir] simply scaled it up to an eleven foot wing- one foot larger than the ten foot world record holder. Since there were now eight rubber band motors, a mechanism was created to release the propellers in sync, but this was problematic. Eventually a slightly heavy but solid solution was found.

[ProjectAir] did more testing, more problem solving, and through rapid iterations, he eventually was able to have a successful flight under radio control. His personal goal of a 12 second flight was exceeded, and then Guinness called! They’re interested in certifying his attempt as long as his plane can fly for at least 30 seconds- almost double his current ability. What will he do? Check the video, too, for [ProjectAir]’s challenge to the community to join him in trying to beat the world record. Sounds like fun!

Aside from powering world record attempting radio controlled aircraft, did you know that you can build a rubber band powered refrigerator? It’s true!

Continue reading “Rubber Band Behemoth Winds Its Way Toward World Record”

Power Tool Hack Takes A New Angle On RC Power Plants

For eons, hacker minded people have looked at various items their pile of stuff, came up with an outlandish idea and thought “I wonder if it would work?” Some of us stop there, convincing ourselves that it’s a bad idea that could never work. Others of us such as [Peter Sripol] are well known for not just having those thoughts, but for having the grit to explore them to their impractical limit, such as is shown in the video below the break.

Peter begins by adapting a model airplane propeller to his 9500 RPM battery powered grinder, and then checks thrust with different propellers to see which seemed most efficient. Then [Peter] did what any aerospace engineer out of their right mind would do: He had his brother design the resulting aircraft, which was inspired by an obscure German WWII asymmetric aircraft design.

Did it fly? It did, and you can see a couple of iterations of it tooling around in the video. But what happened next was equally interesting: First, a grinder powered single bladed helicopter and its subsequent hilarious failure, and its slightly more successful successor.

We’ve of course covered many angle grinder hacks, such as this fixture for perfect cuts (something notoriously difficult to do with a handheld grinder), but this is the first time we’ve seen an angle grinder fly out of more than frustration.  Do you have your own angle grinder hack to spin our way? Be sure to let the Tip Line know!

Continue reading “Power Tool Hack Takes A New Angle On RC Power Plants”

Saving Fuel With Advanced Sensors And An Arduino

When [Robot Cantina] isn’t busy tweaking the 420cc Big Block engine in their Honda Insight, they’re probably working on some other completely far out automotive atrocity. In the video below the break, you’ll see them take the concept of a ‘lean burn’ system from the Insight and graft hack it into their 1997 Saturn coupe.

What’s a lean burn system? Simply put, it tricks the car into burning less fuel when it’s cruising under a light load to improve the vehicle’s average mileage. The Saturn’s electronics aren’t sophisticated enough to implement a lean burn system simply, and so [Robot Cantina] did what any of us might have done: hacked it in with an Arduino.

The video does a wonderful job going into the details, but essentially by using an oxygen sensor with finer resolution (wide-band) and then outputting the appropriate narrow band signal to the ECU, [Robot Cantina] can fine tune the air/fuel ratio with nothing more than a potentiometer, and the car’s ECU is none the wiser. What were the results? Well… they weren’t as expected, which means more experimentation, more parts, and hopefully, more videos. We love seeing the scientific method put to fun use!

People are ever in the quest to try interesting new (and sometimes old) ideas, such as this hot rod hacked to run with a lawnmower carburetor.

Continue reading “Saving Fuel With Advanced Sensors And An Arduino”

Industrial Robot Repurposed To Make S’Mores

It’s summer time in the Northern Hemisphere, and that means campfires for cooking hot dogs, keeping the mosquitoes away, and of course, making s’mores. For our far-flung friends, that’s a fire roasted marshmallow and a square of chocolate smashed between two graham crackers. So called because when you’re done, you’ll want s’more. It’s an easy enough recipe that any child can tell you how to make it. But what if you’re not a child? What if you don’t even have hands, because you’re an industrial robot? This is the challenge that [Excessive Overkill] has taken on in the video below the break.

Starting with a Fanuc S-420 i W industrial robot built in 1997, [Excessive Overkill] painstakingly taught his own personal robot how to make S’Mores. Hacking the microwave with pneumatic cylinders to get the door open was a nice touch, and so are the vacuum grippers at the business end of the S’More-bot.

We know, we said you were supposed to make them on a campfire — but who wants to risk cooking their vintage robotic arm just to melt some chocolate?

There’s a lot of story behind this hack, and [Excessive Overkill] explains how they acquired, transported, and three phase powered an out of date industrial robot in another of their videos. Of course, this is Hackaday so it’s a subject that’s come up before in the reverse engineering of an industrial robot that we covered some time back.

Continue reading “Industrial Robot Repurposed To Make S’Mores”

Cool Face Mask Turns Into Over-Engineered Headache

Seeing his wife try to use a cool face mask to get through the pain of a migraine headache, [Sparks and Code] started thinking of ways to improve the situation. The desire to save her from these debilitating bouts of pain drove him to make an actively cooled mask, all the while creating his own headache of an over-engineered mess.

Void spaces inside the printed mask are filled with chilled water.

Instead of having to put the face mask into the refrigerator to get it cold, [Sparks and Code] wanted to build a mask that he could circulate chilled water through. With a large enough ice-filled reservoir, he figured the mask should be able to stay at a soothing temperature for hours, reducing the need for trips to the fridge.

[Sparks and Code] started out by using photogrammetry to get a 3D model of his wife’s face. Lack of a compatible computer and CUDA-enabled GPU meant using Google Cloud to do the heavy lifting. When they started making the face mask, things got complicated. And then came the unnecessary electronics. Then the overly complicated  and completely unnecessary instrumentation. The… genetic algorithms? Yes. Those too.

We won’t spoil the ending — but suffice it to say, [Sparks and Code] learned a cold, hard lesson: simpler is better! Then again, sometimes being over-complicated is kind of the point such as in this way-too-complex gumball machine.

Continue reading “Cool Face Mask Turns Into Over-Engineered Headache”