Brass Plaque Honors Brother

Brass plaques are eye-catching because no one makes them on a whim. They are more costly than wood or plastic, and processing them is proportionally difficult. [Becky Stern] picked the medium to honor her brother, who enjoyed coffee, motorcycles, and making things by hand. She made some playing card-sized pieces to adorn his favorite brand of hot bean juice and a large one to hang at his memorial site.

The primary components are a vertical salt water bath, DC power supply, metal to etch, scrap steel approximately the same size, and a water agitator, which in this case is an air pump and diffuser stone. You could stir manually for two hours and binge your shows but trust us and take the easy route. The video doesn’t explicitly call for flexible wires, but [Becky] wisely selected some high-strand hook-up leads, which will cause fewer headaches as stiff copper has a mind of its own, and you don’t want the two sides colliding.

There are a couple of ways to transfer an insulating mask to metal, and we see the ole’ magazine paper method fail in the video, but cutting vinyl works a treat. You may prefer lasers or resin printers, and that’s all right too. Once your mask is sorted, connect the positive lead to the brass and the negative to your steel. Now, it’s into the agitated salt water bath, apply direct current, and allow electricity to immortalize your design.

Continue reading “Brass Plaque Honors Brother”

Next Floor: Geosynchronous Satellites, Orbiting Laboratories

On Star Trek, if you want to go from one deck to another, you enter a “turbolift” and tell it where you want to go. However, many people have speculated that one day you’ll ride an elevator to orbit instead of using a relatively crude rocket. The idea is simple. If you had a tether anchored on the Earth with the other end connected to a satellite, you could simply move up and down the tether. Sound simple, so what’s the problem? The tether has to withstand enormous forces, and we don’t know how to make anything practical that could survive it. However, a team at the International Space Elevator Consortium could have the answer: graphene ribbons.

The concept is not new, but the hope of any practical material able to hold up to the strain has been scant. [Arthur C. Clarke] summed it up in 1979:

How close are we to achieving this with known materials? Not very. The best steel wire could manage only a miserable 31 mi (50 km) or so of vertical suspension before it snapped under its own weight. The trouble with metals is that, though they are strong, they are also heavy; we want something that is both strong and light. This suggests that we should look at modern synthetic and composite materials. Kevlar… for example, could sustain a vertical length of 124 mi (200 km) before snapping – impressive, but still totally inadequate compared with the 3,100 (5,000 km) needed.

Continue reading “Next Floor: Geosynchronous Satellites, Orbiting Laboratories”

NVIDIA Unleashes The First Jetson AGX Orin Module

Back in March, NVIDIA introduced Jetson Orin, the next-generation of their ARM single-board computers intended for edge computing applications. The new platform promised to deliver “server-class AI performance” on a board small enough to install in a robot or IoT device, with even the lowest tier of Orin modules offering roughly double the performance of the previous Jetson Xavier modules. Unfortunately, there was a bit of a catch — at the time, Orin was only available in development kit form.

But today, NVIDIA has announced the immediate availability of the Jetson AGX Orin 32GB production module for $999 USD. This is essentially the mid-range offering of the Orin line, which makes releasing it first a logical enough choice. Users who need the top-end performance of the 64GB variant will have to wait until November, but there’s still no hard release date for the smaller NX Orin SO-DIMM modules.

That’s a bit of a letdown for folks like us, since the two SO-DIMM modules are probably the most appealing for hackers and makers. At $399 and $599, their pricing makes them far more palatable for the individual experimenter, while their smaller size and more familiar interface should make them easier to implement into DIY builds. While the Jetson Nano is still an unbeatable bargain for those looking to dip their toes into the CUDA waters, we could certainly see folks investing in the far more powerful NX Orin boards for more complex projects.

While the AGX Orin modules might be a bit steep for the average tinkerer, their availability is still something to be excited about. Thanks to the common JetPack SDK framework shared by the Jetson family of boards, applications developed for these higher-end modules will largely remain compatible across the whole product line. Sure, the cheaper and older Jetson boards will run them slower, but as far as machine learning and AI applications go, they’ll still run circles around something like the Raspberry Pi.

The modem in question plugged into a black powerbank.

Hackable $20 Modem Combines LTE And Pi Zero W2 Power

[extrowerk] tells us about a new hacker-friendly device – a $20 LTE modem stick with a quadcore CPU and WiFi, capable of running fully-featured Linux distributions. This discovery hinges on a mountain of work by a Chinese hacker [HandsomeYingYan], who’s figured out this stick runs Android, hacked its bootloader, tweaked a Linux kernel for it and created a Debian distribution for the stick – calling this the OpenStick project. [extrowerk]’s writeup translates the [HandsomeYingYan]’s tutorial for us and makes a few more useful notes. With this writeup in hand, we have unlocked a whole new SBC to use in our projects – at a surprisingly low price!

At times when even the simplest Pi Zero is unobtainium (yet again!), this is a wonderful find. For a bit over the price of a Zero 2W, you get a computer with a similar CPU (4-core 1GHz A53-based Qualcomm MSM8916), same amount of RAM, 4GB storage, WiFi – and an LTE modem. You can stick this one into a powerbank or a wallwart and run it at a remote location, make it into a home automation hub, or perhaps, process some CPU-intensive tasks in a small footprint. You can even get them with a microSD slot for extra storage – or perhaps, even extra GPIOs? You’re not getting a soldering-friendly GPIO header, but it has a few LEDs and, apparently, a UART header, so it’s not all bad. As [extrowerk] points out, this is basically a mobile phone in a stick form factor, but without the display and the battery.

The modem with its cover taken off, showing the chips on its board.Now, there’s caveats. [extrowerk] points out that you should buy the modem with the appropriate LTE bands for your country – and that’s not the only thing to watch out for. A friend of ours recently obtained a visually identical modem; when we got news of this hack, she disassembled it for us – finding out that it was equipped with a far more limited CPU, the MDM9600. That is an LTE modem chip, and its functions are limited to performing USB 4G stick duty with some basic WiFi features. Judging by a popular mobile device reverse-engineering forum’s investigations (Russian, translated), looks like the earlier versions of this modem came with the way more limited MDM9600 SoC, not able to run Linux like the stick we’re interested in does. If you like this modem and understandably want to procure a few, see if you can make sure you’ll get MSM8916 and not the MDM9600.

Days of using WiFi routers to power our robots are long gone since the advent of Raspberry Pi, but we still remember them fondly, and we’re glad to see a router stick with the Pi Zero 2W oomph. We’ve been hacking at such sticks for over half a decade now, most of them OpenWRT-based, some as small as an SD card reader. Now, when SBCs are hard to procure, this could be a perfect fit for one of your next projects.

Update: in the comments below, people have found a few links where you should be able to get one of these modems with the right CPU. Also, [Joe] has started investigating the onboard components!

Hackaday Prize 2022: A Hefty Hoverboard Rover

Popular consumer products often become the basis of many hacker projects, and hoverboards are a good example of this. [Tanguy] is using the drivetrain from a pair of hoverboards to build a beefy little rover platform with independent suspension.

Since hoverboards were designed to move around fully grown humans, the motors have the torque to spare for this 25 kilogram (55 pound) rover. For rough terrain, each of the four motor/wheel combos is mounted to arms bolted together with 3D printed parts and thick laser-cut aluminum. Suspension is simple and consists of a couple of loops of bungee cord. The chassis uses aluminum extrusion bolted together with aluminum plates and more printed fittings.

It doesn’t look like the rover is running yet, but [Tanguy] intends to power it with an electric scooter battery and control it with his own Universal Robot Remote. He also added an E-stop to the top and a cheap indoor PTZ camera for FPV. We look forward to seeing the functional rover and how it handles terrain.

We’ve seen hoverboard motors get used in other rover projects, but also for scootersskateboards, and even a hydroelectric turbine. It’s also possible to use them as is by mounting them to existing chassis’ to create electric carts.

Continue reading “Hackaday Prize 2022: A Hefty Hoverboard Rover”

The Hackaday Summer Camp Survival Guide

It’s a feature of summer for us, the round of hacker camps in which members of our community gather in fields and spend a few days relaxing and doing what we do best. This summer I’ll have been to four of them by September, one of which was unexpected because a last-minute ticket came my way. For Hackaday they’re a chance to connect with our readers and maybe see come of the coolest stuff in person.

If you consult the wiki for your hacker camp of choice then you’ll usually find a page of tips about what to bring. Starting with a tent and a sleeping bag and probably going on to sunscreen, a hat, and maybe how to avoid dehydration. I’d probably add spare toilet paper and disinfectant spray in case the toilets are nightmarish. All very practical stuff, but expressed in a dry list format that doesn’t really tell you what to expect. A hacker camp can be overwhelming if you’ve not been to one before, so how do you get the best out of it? Here are a few tips based on our experience. Continue reading “The Hackaday Summer Camp Survival Guide”

Saving Fuel With Advanced Sensors And An Arduino

When [Robot Cantina] isn’t busy tweaking the 420cc Big Block engine in their Honda Insight, they’re probably working on some other completely far out automotive atrocity. In the video below the break, you’ll see them take the concept of a ‘lean burn’ system from the Insight and graft hack it into their 1997 Saturn coupe.

What’s a lean burn system? Simply put, it tricks the car into burning less fuel when it’s cruising under a light load to improve the vehicle’s average mileage. The Saturn’s electronics aren’t sophisticated enough to implement a lean burn system simply, and so [Robot Cantina] did what any of us might have done: hacked it in with an Arduino.

The video does a wonderful job going into the details, but essentially by using an oxygen sensor with finer resolution (wide-band) and then outputting the appropriate narrow band signal to the ECU, [Robot Cantina] can fine tune the air/fuel ratio with nothing more than a potentiometer, and the car’s ECU is none the wiser. What were the results? Well… they weren’t as expected, which means more experimentation, more parts, and hopefully, more videos. We love seeing the scientific method put to fun use!

People are ever in the quest to try interesting new (and sometimes old) ideas, such as this hot rod hacked to run with a lawnmower carburetor.

Continue reading “Saving Fuel With Advanced Sensors And An Arduino”