VRML And The Dream Of Bringing 3D To The World Wide Web

You don’t have to be a Snow Crash or Tron fan to be familiar with the 3D craze that characterized the rise of the Internet and the World Wide Web in particular. From phrases like ‘surfing the information highway’ to sectioning websites as if to represent 3D real-life equivalents or sorting them by virtual streets like Geocities did, there has always been a strong push to make the Internet a more three-dimensional experience.

This is perhaps not so strange considering that we humans are ourselves 3D beings used to interacting in a 3D world. Surely we could make this fancy new ‘Internet’ technology do something more futuristic than connect us to text-based BBSes and serve HTML pages with heavily dithered images?

Enter VRML, the Virtual Reality Modelling Language, whose 3D worlds would surely herald the arrival of a new Internet era. Though neither VRML nor its successor X3D became a hit, they did leave their marks and are arguably the reason why we have technologies like WebGL today.

Continue reading “VRML And The Dream Of Bringing 3D To The World Wide Web”

A PC That Uses Hot Coffee As Coolant

Modern computers generate a great deal of heat when under load, thus we cool them with fans and sometimes even water cooling systems. [Doug MacDowell] figured that water was alright, but why not use coffee instead?

Someone tell us how [Doug] made this graph look like it’s right out of a 1970s college textbook.
The concept is simple enough — replace water in a PC’s cooling loop with fresh-brewed coffee. [Doug] fully integrated an entire PC build on to the side of a General Electric drip coffee maker. It’s an absolute mess of tubes and wires, but it’s both a PC and a functional coffee maker in one.

The coffee maker percolates coffee as per normal into the carafe, and from there, it’s then pumped through two radiators on top of the PC. From there, it circulates to the water block on top of the CPU, and then back to the carafe on the coffee maker where the cycle repeats. Doug notes the coffee is initially so hot (90 C) that the PC is at risk of crashing, but after 75 minutes circulating through the system, the coffee and CPU sit at an equilibrium temperature of 33 C.

You can’t really drink coffee from this machine. PC water cooling components are not food safe in any way, and [Doug] notes mold will become an issue over time. For short periods at least, though, it’s possible to sort-of-cool your computer with hot, fresh coffee if you really want to do that.

We’ve featured some great hacks of conventional coffee machines over the years, including this fantastic talk at Supercon 2023.

Continue reading “A PC That Uses Hot Coffee As Coolant”

330k volts

Sparks Fly: Building A 330 KV Supply From A PC PSU

If you’re hunting for a bench power supply, you’ll quickly notice options dry up above 48 V or so, and you definitely won’t find a 330 kV supply on the shelf at your local electronics shop. But with just a few parts, [Mircemk] has crafted a high-voltage source from a modified PC power supply that delivers electrifying results.

The sparks arcing over a foot of thin air are a dead giveaway, but let’s be clear: this project is not for beginners. High voltage — defined as around 1,000 V and up, with this project hitting 350 times that — carries risks of severe injury or death. Only tackle it if you fully understand the dangers and take precautions like proper insulation and never working alone.

This project showcases a Cockcroft-Walton voltage multiplier, a clever setup using diodes and capacitors to step up voltage. The capacitors charge and discharge in an alternating pattern, doubling the voltage after each diode pair. [Mircemk] uses 3 mm thick Plexiglas as an insulator, providing both structure and electrical isolation for the diode-capacitor cascade.

To achieve the 330,000 V output, [Mircemk] starts by modifying a standard PC ATX power supply, removing the Schottky diodes from the secondary winding’s output to produce a roughly 15 V square wave. This feeds into another transformer, boosting the voltage before it enters the Cockcroft-Walton multiplier. At first glance, the multiplier’s sides look identical, but their opposite polarities create a massive potential difference across the spark gap.

[Mircemk]’s benchtop exploration into high-voltage territory is a shocking success. If this project lights up your curiosity, dive into our other high-voltage adventures, like DIY Tesla coils or plasma speakers, for more electrifying inspiration.

Continue reading “Sparks Fly: Building A 330 KV Supply From A PC PSU”

A man standing next to a host of small automatic trash cans

Automated Rubbish Removal System

The hackers over at [HTX Studio] built a set of twenty trash cans which can automatically catch and remove rubbish.

In order to catch trash a bin needs to do two things: detect where trash will land; and then get there, fast. The second part is easy: three big motors with wheels under the bin. But how does a bin know where the trash will land? It uses a camera installed in the bin itself for that.

[HTX Studio] iteratively trained a model to process visual information from the camera to identify common types of trash. When it sees a trained object flying through the air it rushes to catch it where it will land. After many rounds of fine-tuning it finally started to work reliably.

Continue reading “Automated Rubbish Removal System”

OpenAI Releases Gpt-oss AI Model, Offers Bounty For Vulnerabilities

OpenAI have just released gpt-oss, an AI large language model (LLM) available for local download and offline use licensed under Apache 2.0, and optimized for efficiency on a variety of platforms without compromising performance. This is their first such “open” release, and it’s with a model whose features and capabilities compare favorably to some of their hosted services.

OpenAI have partnered with ollama for the launch which makes onboarding ridiculously easy. ollama is an open source, MIT-licensed project for installing and running local LLMs, but there’s no real tie-in to that platform. The models are available separately: gpt-oss-20b can run within 16 GB of memory, and the larger and more capable gpt-oss-120b requires 80 GB. OpenAI claims the smaller model is comparable to their own hosted o3-mini “reasoning” model, and the larger model outperforms it. Both support features like tool use (such as web browsing) and more.

LLMs that can be downloaded and used offline are nothing new, but a couple things make this model release a bit different from others. One is that while OpenAI have released open models such as Whisper (a highly capable speech-to-text model), this is actually the first LLM they have released in such a way.

The other notable thing is this release coincides with a bounty challenge for finding novel flaws and vulnerabilities in gpt-oss-20b. Does ruining such a model hold more appeal to you than running it? If so, good news because there’s a total of $500,000 to be disbursed. But there’s no time to waste; submissions need to be in by August 26th, 2025.

2025 One Hertz Challenge: An Animated Ferrofluid Display

Ferrofluid is fun. You’ve probably seen all kinds of demos with it bouncing around in response to magnetic fields, or dancing near a speaker. [beastie417] decided to turn the entertaining fluid into a display.

The basic concept of the ferrofluid display. Note the header image of this article shows the electromagnet array without the ferrofluid pane in place.

The concept is straightforward enough. First, construct a tank of ferrofluid with a white panel behind it for contrast. Then, place it in front of a grid of electromagnets. Now you have many “pixels” you can turn on and off. You turn a magnet on to attract ferrofluid to that point, and turn it off to let it fall away. Since the ferrofluid contrasts with the white background, you have a viable display!

[beastie417] notes that while the concept is simple, the execution is hard. Ferrofluid can be very difficult to work with, instantly staining many materials like acrylic and even glass that isn’t properly prepared. It can also be quite expensive to construct a display like this, with [beastie417] noting their 16×12 pixel design costing approximately $700 thus far. Then you have to figure out how to drive all the pixels—this project uses DRV8908 coil driver ICs running off a microcontroller which controls the display and handles animations.

We’ve seen some great ferrofluid displays before, like this neat build that could even create readable glyphs. Meanwhile, if you’re doing rad things with the coolest fluid of the new millennium, don’t hesitate to let us know!

A Robot Controller With The Compute Module 5

The regular Raspberry Pi line is a flexible single-board computer, but sometimes you might find yourself wishing for a form factor that was better designed for installation into a greater whole. This is why the Compute Module variants exist. Indeed, leveraging that intention, [Hans Jørgen Grimstad] has used the powerful Compute Module 5 as the heart of his “Overlord” robot controller.

The Compute Module 5 offers a powerful quad-core 64-bit ARM chip running at 2.4 GHz, along with anywhere from 2 to 16GB of RAM. You can also get it with WiFi and Bluetooth built in onboard, and it comes with a wide range of I2C, SPI, UART, and GPIO pins to serve whatever ends you envision for them. It’s a whole lot of capability, but the magic is in what you do with it.

For [Hans], he saw this as a powerful basis for a robot controller. To that end, he built a PCB to accept the Compute Module 5, and outfit it with peripherals suited to robotics use. His carrier board equips it with an MCP2515 CAN controller and a TJA1051 CAN transceiver, ideal for communicating in a timely manner with sensors or motor controllers. It also has a 9-axis BNO055 IMU on board, capable of sensor fusion and 100Hz updates for fine sensing and control. The board is intended to be easy to use with hardware like Xiaomi Cybergear motors and Dynamixels servos. As a bonus, there is power circuitry on board to enable it to run off anything from 5 to 36V. While GPIOs aren’t exposed, [Hans] notes that you can even pair it with a second Pi if you want to use GPIOs or camera ports or do any other processing offboard.

If you’re looking for a place to start for serious robot development, the Overlord board has plenty of capability. We’ve explored the value of the Compute Module 5 before, too. Meanwhile, if you’re cooking up your own carrier boards, don’t hesitate to let the tipsline know!