Kids Vs Computers: Chisanbop Remembered

If you are a certain age, you probably remember the ads and publicity around Chisanbop — the supposed ancient art of Korean finger math. Was it Korean? Sort of. Was it faster than a calculator? Sort of. [Chris Staecker] offers a great look at Chisanbop, not just how to do it, but also how it became such a significant cultural phenomenon. Take a look at the video below. Long, but worth it.

Technically, the idea is fairly simple. Your right-hand thumb is worth 5, and each finger is worth 1. So to identify 8, you hold down your thumb and the first three digits. The left hand has the same arrangement, but everything is worth ten times the right hand, so the thumb is 50, and each digit is worth 10.

With a little work, it is easy to count and add using this method. Subtraction is just the reverse. As you might expect, multiplication is just repeated addition. But the real story here isn’t how to do Chisanbop. It is more the story of how a Korean immigrant’s system went viral decades before the advent of social media.

You can argue that this is a shortcut that hurts math understanding. Or, you could argue the reverse. However, the truth is that this was around the time the calculator became widely available. Math education would shift from focusing on getting the right answer to understanding the underlying concepts. In a world where adding ten 6-digit numbers is easy with a $5 device, being able to do it with your fingers isn’t necessarily a valuable skill.

If you enjoy unconventional math methods, you may appreciate peasant multiplication.

Continue reading “Kids Vs Computers: Chisanbop Remembered”

Behind RadioShack’s Cheapest Computer

In the 1980s, there was a truly staggering amount of choice for a consumer looking to purchase a home computer. On the high end, something like an Apple Lisa, a business-class IBM PC, or a workstation from Sun Microsystems could easily range from $6,000 to $20,000 (not adjusted for inflation). For the time, these mind-blowing prices might have been worth the cost, but for those not willing to mortgage their homes for their computing needs, there were also some entry-level options. One of these was the Sinclair ZX-80, which was priced at an astounding $100, which caused RadioShack to have a bit of a panic and release this version of the TRS-80 computer to compete with it.

As [David] explains in his deep dive into this somewhat obscure machine, the TRS-80 MC-10 was a commercial failure, although not for want of features. It had a color display, a chicklet keyboard, and 4K of RAM, which were all things that the ZX-80 lacked.

Unfortunately, it also had a number of drawbacks compared to some of its other contemporaries that made consumers turn away. Other offerings by Commodore, Atari, Texas Instruments, and even RadioShack themselves were only marginally more expensive and had many more features, including larger memory and better storage and peripheral options, so most people chose these options instead.

The TRS-80 MC-10 is largely a relic of the saturated 80s home computer market. It’s drop in price to below $50, and the price competition between other PC manufacturers at the time was part of the reason for the video game crash of the 1980s, and even led to Steve Jobs getting fired from Apple. There’s not a huge retro scene for these machines either, although there is at least one game developer you can see in the video below from [Spriteworx]. If you want to experiment with some of the standard TRS-80 software, there are emulators that have everything you need.

Thanks to [Stephen] for the tip!

Behind The Bally Home Computer System

Although we might all fundamentally recognize that gaming consoles are just specialized computers, we generally treat them, culturally and physically, differently than we do desktops or laptops. But there was a time in the not-too-distant past where the line between home computer and video game console was a lot more blurred than it is today. Even before Microsoft entered the scene, companies like Atari and Commodore were building both types of computer, often with overlapping hardware and capabilities. But they weren’t the only games in town. This video takes a look at the Bally Home Computer System, which was a predecessor of many of the more recognized computers and gaming systems of the 80s.

At the time, Bally as a company was much more widely known in the pinball industry, but they seemed to have a bit of foresight that the computers used in arcades would eventually transition to the home in some way. The premise of this console was to essentially start out as a video game system that could expand into a much more full-featured computer with add-ons. In addition to game cartridges it came with a BASIC interpreter cartridge which could be used for programming. It was also based on the Z80 microprocessor which was used in other popular PCs of the time, so in theory it could have been a commercial success but it was never able to find itself at the top of the PC pack.

Although it maintains a bit of a cult following, it’s a limited system even by the standards of the day, as the video’s creator [Vintage Geek] demonstrates. The controllers are fairly cumbersome, and programming in BASIC is extremely tedious without a full keyboard available. But it did make clever use of the technology at the time even if it was never a commercial success. Its graphics capabilities were ahead of other competing systems and would inspire subsequent designs in later systems. It’s also not the last time that a video game system that was a commercial failure would develop a following lasting far longer than anyone would have predicted.

Continue reading “Behind The Bally Home Computer System”

Bento Is An All-In-One Computer Designed To Be Useful

All-in-one computers in which the mainboard lurked beneath a keyboard were once the default in home computing, but more recently they have been relegated to interesting niche devices such as the Raspberry Pi 400 and 500.

The Bento is another take on the idea, coming at it not with the aim of replacing a desktop machine, instead as a computer for use with wearable display glasses. The thinking goes that when your display is head mounted, why carry around a screen with your laptop.

On top it’s a keyboard, but underneath it’s a compartmentalized space similar to the Japanese lunchboxes which lend the project its name. The computing power comes courtesy of a Steam Deck so it has a USB-C-for-everything approach to plugging in a desktop, though there’s a stated goal to produce versions for other boards such as the Raspberry Pi. There’s even an empty compartment for storage of peripherals.

We like this computer, both for being a cyberdeck and for being without a screen so not quite like the other cyberdecks. It’s polished enough that we could almost imagine it as a commercial product. It’s certainly not the first Steam Deck based cyberdeck we’ve seen.

Hand holding small speaker

Ben Eater Makes Computer Noises

When [Ben Eater] talks, hackers everywhere listen. In his latest video [Ben] shows us how to make computer noises using square waves and a 6502 microprocessor.

[Ben] uses the timer in the W65C22 Versatile Interface Adapter to generate the square waves which generate a tone. He then adds support for a new BEEP command into his MS BASIC interpreter. We covered [Ben Eater]’s MS BASIC here at Hackaday back in April, so definitely check that out if you missed it.

Continue reading “Ben Eater Makes Computer Noises”

This Relay Computer Has Magnetic Tape Storage

Magnetic tape storage is something many of us will associate with 8-bit microcomputers or 1960s mainframe computers, but it still has a place in the modern data center for long-term backups. It’s likely not to be the first storage tech that would spring to mind when considering a relay computer, but that’s just what [DiPDoT] has done by giving his machine tape storage.

We like this hack, in particular because it’s synchronous. Where the cassette storage of old just had the data stream, this one uses both channels of a stereo cassette deck, one for clock and the other data. It’s encoded as a sequence of tones, which are amplified at playback (by a tube amp, of course) to drive a rectifier which fires the relay.

On the record side the tones are made by an Arduino, something which we fully understand but at the same time can’t help wondering whether something electromechanical could be used instead. Either way, it works well enough to fill a relay shift register with each byte, which can then be transferred to the memory. It’s detailed in a series of videos, the first of which we’ve paced below the break.

If you want more cassette tape goodness, while this may be the slowest, someone else is making a much faster cassette interface. Continue reading “This Relay Computer Has Magnetic Tape Storage”

Using A Videocard As A Computer Enclosure

The CherryTree-modded card next to the original RTX 2070 GPU. (Credit: Gamers Nexus)

In the olden days of the 1990s and early 2000s, PCs were big and videocards were small-ish add-in boards that blended in with other ISA, PCI and AGP cards. These days, however, videocards are big and computers are increasingly smaller. That’s why US-based CherryTree Computers did what everyone has been joking about, and installed a PC inside a GPU, with [Gamers Nexus] having the honors of poking at the creatively titled GeeFarce 5027POS Micro Computer.

As CherryTree describes it on their website, this one-off build was the result of a joke about how GPUs nowadays are more expensive than the rest of the PC combined. Thus they did what any reasonable person would do and put an Asus NUC 13 with a 13th gen Core i7, 64 GB of and 2 TB of NVMe storage inside an (already dead) Asus Aorus RTX 2070 GPU.

In the [Gamers Nexus] video we can see that it’s definitely a quick-and-dirty build, with plenty of heatshrink and wires running everywhere in addition to the chopped off original heatsink. That said, from a few meter away it still looks like a GPU, can be installed like a GPU (but the PCIe connector does nothing) and is in the end a NUC PC inside a GPU shell that you can put a couple of inside a PC case.

Presumably the next project we’ll see in this vein will see a full-blown x86 system grafted inside a still functioning GPU, which would truly make the ‘install the PC inside the GPU’ meme a reality.

Continue reading “Using A Videocard As A Computer Enclosure”