Beating IBM’s Eagle Quantum Processor On An Ising Model With A Classical Tensor Network

The central selling point of qubit-based quantum processors is that they can supposedly solve certain types of tasks much faster than a classical computer. This comes however with the major complication of quantum computing being ‘noisy’, i.e. affected by outside influences. That this shouldn’t be a hindrance was the point of an article published last year by IBM researchers where they demonstrated a speed-up of a Trotterized time evolution of a 2D transverse-field Ising model on an IBM Eagle 127-qubit quantum processor, even with the error rate of today’s noisy quantum processors. Now, however, [Joseph Tindall] and colleagues have demonstrated with a recently published paper in Physics that they can beat the IBM quantum processor with a classical processor.

In the IBM paper by [Yougseok Kim] and colleagues as published in Nature, the essential take is that despite fault-tolerance heuristics being required with noisy quantum computers, this does not mean that there are no applications for such flawed quantum systems in computing, especially when scaling and speeding up quantum processors. In this particular experiment it concerns an Ising model, a statistical mechanical model, which has many applications in physics, neuroscience, etc., based around phase transitions.

Unlike the simulation running on the IBM system, the classical simulation only has to run once to get accurate results, which along with other optimizations still gives classical systems the lead. Until we develop quantum processors with built-in error-tolerance, of course.

BeagleV Catches Fire With The BeagleV-Fire

A new BeagleBoard is on the way, full of FPGA hotness: the BeagleV-Fire has been announced. The new $150 Single-Board Computer (SBC) from the pioneering open source BeagleBoard company is built around a RISC-V chip that has FPGA features built in. The BeagleV-Fire is built around the snappily named Microchip PolarFire MPFS025T FCVG484E, a System on a Chip (SoC) that has five Reduced Instruction Set Coding Version 5 (RISC-V) cores and a big chunk of FPGA fabric built in. That means it combines the speed of RISC-V processors with the flexibility of Field Programmable Gate Arrays (FPGA), a big pile of logic gates that can be reprogrammed.

The new BeagleV-Fire includes a sizeable chunk of FPGA to work with: the core chip includes 23 K logic elements and 68 Math blocks, plus 4 Serializer/Deserializer (SerDer) lanes that can throw about 12.7 Gbps of data into and out of the fabric. On the BeagleV-Fire, the main chip is supported by 16 GB of eMMC and 2 GB of LPDDR4 RAM, plus a micro SD slot for extra storage. Gigabit Ethernet is also included, plus USB-C power and a few serial connections for debugging. There is no WiFi built in, but there is an M.2 Key E connection were you could plug in an a wireless adapter if you need it.

Like most other BeagleBoards, the BeagleV-Fire has two headers with 92 pins, which offer access to pretty much every signal on the board, plus lots of analog to digital stuff that works with add-on boards (BeagleBoard refers to them as capes). Also present is the usual 22-pin CSI connector for attaching cameras and other devices.

Want one? They are available for immediate order on BeagleBoard.org or from the usual suspects. It looks like they are already in stock for next-day delivery. If this all sounds familiar, it’s probably because we’ve been posting about this particular board for awhile now, covering both the announcement and first tests. Continue reading “BeagleV Catches Fire With The BeagleV-Fire”

At Last, A Beagle V In The Wild

The RISC-V ISA specification contains the recipe for everything from the humblest of microcontrollers to the most accomplished of high-end application processors, but it’s fair to say that at our end of the market it’s mostly been something for the lower end. There are plenty of inexpensive small RISC-V microcontrollers, but so far not much powerful enough for example to run a Linux-based operating system.

It’s a situation that’s slowly changing though, and it looks as though things may have taken a turn for the better as a new BeagleBoard has appeared using a RISC-V chip. The BeagleV-Ahead has a BeagleBone form factor and packs an Alibaba T-Head TH1520 SoC, a 2GHz quad-core part with a GPU and DSP components on-board. They link to a selection of distributors, from which one can seemingly be bought for about $170.

It’s a departure from the ARM chips that have until now powered the BeagleBoard line, but its appearance shouldn’t come as a surprise to seasoned Beagle watchers as they announced their RISC-V developments back in 2021. We’re guessing they too had to contend with the chip shortage which hit other players such as Raspberry Pi, so we’re pleased to see a product on the market. In particular though we’re pleased to see one on a BeagleBoard. because unlike a random no-name single board computer they’re a manufacturer who supports their products.

There’s a page with a good choice of operating systems for the board, and we hope that this means they provide kernel support for this SoC. This is the real benefit of buying a BeagleBoard or a Raspberry Pi, because cheap competitors will typically support only one kernel version compared with their years of support. So while this board is by no means cheap, we’re hoping it heralds a new wave of powerful RISC-V computers. Something to look forward to indeed.

Importing EAGLE Projects Into KiCad 7, And How To Fix Them

Migrating a PCB design from one CAD software package to another is no one’s favorite task. It almost never works cleanly. Often there are missing schematic symbols, scrambled PCB footprints, and plenty of other problems. Thankfully [shabaz] shows how to import EAGLE projects into KiCad 7 and fix the most common problems one is likely to encounter in the process. Frankly, the information couldn’t come at a better time.

This is very timely now that EAGLE has gone the way of the dodo. CadSoft EAGLE used to be a big shot when it came to PCB design for small organizations or individual designers, but six years after being purchased by Autodesk they are no more. KiCad 7 is a staggeringly capable open-source software package containing some fantastic features for beginner and advanced designers alike.

Of course, these kinds of tutorials tend to be perishable because software changes over time. So if you’re staring down a migration from EAGLE to KiCad and could use some guidance, there’s no better time than the present. [shabaz]’s video showing the process is embedded below.

Thanks to [problemchild68] for the tip!

Continue reading “Importing EAGLE Projects Into KiCad 7, And How To Fix Them”

They Used To Be A Big Shot, Now Eagle Is No More

There once was a time when to make a PCB in our community was to use CadSoft EAGLE, a PCB design package which neatly filled the entry level of that category with a free version for non-commercial designs. Upgrading it to the commercial version was fairly inexpensive, and indeed that was a path which quite a few designers making the step from hobby project to small production would take.

Then back in 2017, CadSoft were bought by Autodesk, and their new version 8 of the software changed its licensing model from purchase to rental. It became a product with a monthly subscription and an online side, and there began an exodus of users for whom pay-to-play meant too much risk of losing access to their designs. Now six years later the end has come, as the software behemoth has announced EAGLE’s final demise after a long and slow decline. Continue reading “They Used To Be A Big Shot, Now Eagle Is No More”

Four square, unpopulated purple PCBs sit in front of a tube of soldering flux on a light grey work surface. The PCBs are only 1"x1".

BeagleStamp Makes Soldering Linux Into Your Projects Easier

There are a lot of things you can do with today’s powerful microcontrollers, but sometimes you really need a full embedded Linux setup. [Dylan Brophy] wanted to make it easier to add Linux to his own projects and designed the BeagleStamp.

A populated purple PCB propped against a piece of wood on a light grey work surface. The bulk of the PCB is covered in an Ocatavo processor chip.Squeezed onto a 1″ square, the BeagleStamp puts the power of a PocketBeagle into an easy to solder module you can add to a project without all that tedious mucking about with individually soldering all the components of a tiny Linux computer every time. As a bonus, the 4 layer connections are constrained to the stamp as well, so you can use lower layer count boards in your project and have your Linux too.

The first run of boards was delivered with many of the pins unplated, but [Brophy] plans to work around it for the time being so he can spot any other bugs before the next board revision. Might we suggest a future version using RISC-V?

IBM Eagle Has A Lot Of Qubits

How many qubits do you need in a quantum computer? Plenty, if you want to anything useful. However, today, we have to settle for a lot fewer than we would like. But IBM’s new Eagle has the most of its type of quantum computer: 127-qubits. Naturally, they plan to do even more work, and you can see a preview of “System Two” in the video below.

The 127 qubit number is both impressively large and depressingly small. Each qubit increases the amount of work a conventional computer has to do to simulate the machine by a factor of two. The hope is to one day produce quantum computers that would be impractical to simulate using conventional computers. That’s known as quantum supremacy and while several teams have claimed it, actually achieving it is a subject of debate.

Like any computer, more bits — or qubits — are better than fewer bits, generally speaking. However, it is especially important for modern quantum systems since most practical schemes require redundancy and error correction to be reliable in modern implementations of quantum computer hardware. What’s in the future? IBM claims they will build the Condor processor with over 1,000 qubits using the same 3D packaging technology seen in Eagle. Condor is slated for 2023 and there will be an intermediate chip due in 2022 with 433 qubits.

Scaling anything to a large number usually requires more than just duplicating smaller things. In the case of Eagle and at least one of its predecessors, part of the scaling was to use readout units that can read different qubits. Older processors with just a few qubits would have dedicated readout hardware for each qubit, but that’s untenable once you get hundreds or thousands of qubits.

Qubits aren’t the only measure of a computer’s power, just like a conventional computer with more bits might be less capable than one with fewer bits. You also have to consider the quality of the qubits and how they are connected.

Who’s going to win the race to quantum supremacy? Or has it already been won? We have a feeling if it hasn’t already been done, it won’t be very far in the future. If you think about the state of computers in, say, 1960 and compare it to today, about 60 years later, you have to wonder if that amount of progress will occur in this area, too.

Most of the announcements you hear about quantum computing come from Google, IBM, or Microsoft. But there’s also Honeywell and a few other players. If you want to get ready for the quantum onslaught, maybe start with this tutorial that will run on a simulator, mostly.

Continue reading “IBM Eagle Has A Lot Of Qubits”