Hackaday Podcast Episode 355: Person Detectors, Walkie Talkies, Open Smartphones, And A WiFi Traffic Light

Another chilly evening in Western Europe, as Elliot Williams is joined this week by Jenny List to chew the fat over the week’s hacks.

It’s been an auspicious week for anniversaries, with the hundredth since the first demonstration of a working television system in a room above a London coffee shop. John Logie Baird’s mechanically-scanned TV may have ultimately been a dead-end superseded by the all-electronic systems we all know, but the importance of television for the later half of the 20th century and further is beyond question.

The standout hacks of the week include a very clever use of the ESP32’s WiFi API to detect people moving through a WiFi field, a promising open-source smartphone, another ESP32 project in a comms system for cyclists, more cycling on tensegrity spokes, a clever way to smooth plaster casts, and a light sculpture reflecting Wi-Fi traffic. Then there are a slew of hacks including 3D printed PCBs and gem-cut dichroic prisms, before we move to the can’t-miss articles. There we’re looking at document preservation, and a wallow in internet history with a look at the Netscape brand.

As usual all the links you need can be found below, so listen, and enjoy!

Or download the podcast old-school, with a direct link to the MP3 file in question.

Continue reading “Hackaday Podcast Episode 355: Person Detectors, Walkie Talkies, Open Smartphones, And A WiFi Traffic Light”

Whipping Up A Quick Adapter To Hack The Xbox 360

[Androxilogin] had a problem. An Xbox 360 Slim had shown up in the post, but failed to give much more than a beep when turned on. Disassembly revealed some missing components, but replacing them failed to breathe life into the beleaguered console. Deeper repair was needed, and that would require a special adapter which [Androxilogin] was able to whip up from scratch.

When it comes to the Corona models of the Xbox 360, it’s often necessary to use something called a “post-fix adapter” to do certain diagnostic and repair tasks. These adapters consist of a bracket which wraps around the CPU, and probes the solder ball for the POST_OUT signal which is otherwise difficult to access on the motherboard itself. Adapters are readily available online, and are usually manufactured as a PCB with a protruding contact to make a connection.

For [Androxilogin], though, time was short. Rather than wait for adapters to ship, it was quicker to whip up a custom piece to do the same job. This was achieved with a 3D print which was able to clamp around the CPU, while snugly holding a piece of tinned 30 AWG wire to poke the critical point beneath the chip. After a couple of attempts to get the sizing just right, [Androxilogin] was able to make the necessary connection which enabled installing Xell Loader on to the machine to bring it back to life.

If you’re eager to make your own post-fix adapter, files are available on Printables, with more details over on Reddit to boot. While the Xbox 360 is starting to suffer some awkward symptoms of age. we nevertheless still see a steady stream of hacks come in for this vintage machine. If you’re tackling your own retro console mods, be sure to notify the tipsline.

Building Natural Seawalls To Fight Off The Rising Tide

These days, the conversation around climate change so often focuses on matters of soaring temperatures and extreme weather events. While they no longer dominate the discourse, rising sea levels will nonetheless still be a major issue to face as global average temperatures continue to rise.

This poses unique challenges in coastal areas. Municipalities must figure out how to defend their shorelines, or decide which areas they’re willing to lose. The City of Palo Alto is facing just this challenge, and is building a natural kind of seawall to keep the rising tides at bay.

Continue reading “Building Natural Seawalls To Fight Off The Rising Tide”

Comprehensive Power Management For The Raspberry Pi

The Raspberry Pi has been a revolutionary computer in the maker space, providing a full Linux environment, GUI, and tons of GPIO and other interfacing protocols at a considerably low price. This wasn’t its original intended goal, though. Back in the early 2010s it was supposed to be an educational tool for students first, not necessarily a go-to for every electronics project imaginable. As such there are a few issues with the platform when being used this way, and [Vin] addresses his problems with its power management in his latest project.

[Vin]’s main issue is that, unlike a microcontroller, the Raspberry Pi doesn’t have a deep sleep function. That means that even when the operating system is shut down the computer is still drawing an appreciable amount of current, which will quickly drain some batteries. We’ve covered [Vin]’s farm and his use case for the Raspberry Pi in the past, but a quick summary is that these boards are being used in a very rugged environment where utility power isn’t as reliable as he would like.

In [Vin]’s post he not only outlines his design for the board but goes through his design process, starting by using discrete logic components and then trying out various microcontrollers until settling on an ATmega88. The microcontroller communicates with the Raspberry Pi over I2C where the Pi can request a power-down as well as a time for future power-on. A latching relay controlled by the microcontroller ensures the Pi doesn’t drain any battery while the ATmega can put itself into actual sleep in the meantime.

The build for this project goes into an impressive amount of detail, and not only are the designs and code available on the project’s GitHub page but [Vin] also wrote another blog post which uses this project to go over his design philosophy more broadly.

Companion MIDI Pedal Helps Roland Groovebox Along

The Roland SP-404 Mk2 is a popular groovebox that can deliver a great beat if you know how to use it. If you’re seeking greater control than is available out of the box, though, you might like to try a custom pedal built by [Romain Dereu].

The concept is simple enough—[Romain] whipped up a bespoke MIDI device to specifically control various features of the SP-404. It’s based on an Arduino Nano, though it could also be built with an Arduino Uno if so desired. The microcontroller sends the requisite MIDI messages out via its serial UART. The microcontroller is built into a pedal-style enclosure with a big toggle switch and a foot switch. This enables the triggering of various pads on the SP-404, with modes selected via the toggle.

It’s a simple build that opens up new possibilities when playing with the SP-404. If you’ve ever wanted a custom device to spit out some specific MIDI commands to control the synths or drum machines in your performance rig, this project is a great example of how easy this is to achieve. Meanwhile, if you’re whipping your own custom MIDI gear at home, we always love to see it land on our tipsline!

Lazarustorm Lets A PiStorm Live Outside Your Old Amiga

The PiStorm is nothing new; if you’re familiar with the retrocomputer scene, you’ve probably heard of it. By replacing the 68k processor in an old Amiga (or some models of Atari) the PiStorm accelerator gives a multiple order of magnitude speedup. It’s even a reversable mod, plugging in where the original CPU was. What’s not to love? Well, some people would simply prefer to keep their original CPUs in place. [TME Retro] has a video highlighting the solution for those people: the Lazarustorm by [arananet].

It makes perfect sense to us– back in the day, you could plug a whole x86 PC-compatible ‘sidecar’ into your Amiga, so why not a PiStorm? The whole bus is right there for the taking.The Lazarusstorm, as a project, is bog simple compared to the PiStorm itself. A PCB and the connectors to get it plugged into the expansion port on the Amiga side, and the connectors to plug the PiStorm into it on the other. A couple of jumpers and a few passives, and that’s it. [TME Retro] also took the time to come up with a case for it, which sits on felt feet to relieve stress on the PCBs. It’s a nice bit of CAD, but we rather wish he’d done it in beige.

As for the upgraded Amiga, it runs just as fast as it would had the 68k been replaced with a Pi3 and PiStorm internally, which is to say it’s practically a supercomputer by 1980s standards. You get the SD card to serve as a hard drive and can even access the internet via modern WiFi, something Commodore engineers likely never expected an A500 to do. Of course, just connecting to the network is only half the battle when getting these retro machines online. When these accelerators were new, the 68k emulation ran on top of Linux, but now that the EMU68k project has it bare metal and even faster.

This isn’t the first Raspberry-flavoured slice of Amiga sidecar we’ve featured: here’s one running Spotify. If you haven’t got an Amiga, there’s a PiStorm for the FPGA-based MiniMig, too. Continue reading “Lazarustorm Lets A PiStorm Live Outside Your Old Amiga”

Rare-Earth-Free Magnets With High Entropy Borides

Map of the calculated magnetic anisotropy. (Credit: Beeson et al., Adv. Mat., 2025)
Map of the calculated magnetic anisotropy. (Credit: Beeson et al., Adv. Mat., 2025)

Although most of us simultaneously accept the premise that magnets are quite literally everywhere and that few people know how they work, a major problem with magnets today is that they tend to rely on so-called rare-earth elements.

Although firmly in the top 5 of misnomers, these abundant elements are hard to mine and isolate, which means that finding alternatives to their use is much desired. Fortunately the field of high entropy alloys (HEAs) offers hope here, with [Beeson] and colleagues recently demonstrating a rare-earth-free material that could be used for magnets.

Although many materials can be magnetic, to make a good magnet you need the material in question to be both magnetically anisotropic and posses a clear easy axis. This basically means a material that has strong preferential magnetic directions, with the easy axis being the orientation which is the most energetically favorable.

Through experimental validation with magnetic coercion it was determined that of the tested boride films, the (FeCoNiMn)2B variant with a specific deposition order showed the strongest anisotropy. What is interesting in this study is how much the way that the elements are added and in which way determines the final properties of the boride, which is one of the reasons why HEAs are such a hot topic of research currently.

Of course, this is just an early proof-of-concept, but it shows the promise of HEAs when it comes to replacing other types of anisotropic materials, in particular where – as noted in the paper – normally rare-earths are added to gain the properties that these researchers achieved without these elements being required.