This week, Jonathan Bennett and Randal Schwartz chat with Allen Firstenberg about Google’s AI plans, Vibe Coding, and Open AI! What’s the deal with agentic AI, how close are we to Star Trek, and where does Open Source fit in? Watch to find out!
Open Source Commercial Synthesisers You Will Love
Drumboy and Synthgirl from Randomwaves are a a pair of compact electronic instruments, a drum machine and a synthesiser. They are commercial products which were launched on Kickstarter, and if you’re in the market for such a thing you can buy one for yourself. What’s made them of interest to us here at Hackaday though is not their musical capabilities though, instead it’s that they’ve honoured their commitment to release them as open source in the entirety.
So for your download, you get everything you need to build a pair of rather good 24-bit synthesisers based upon the STM32 family of microcontrollers. We’re guessing that few of you will build your own when it’s an easier job to just buy one from Randomwaves, and we’re guessing that this open-sourcing will lead to interesting new features and extensions from the community of owners.
It will be interesting to watch how this progresses, because of course with the files out there, now anyone can produce and market a clone. Will AliExpress now be full of knock-off Drumboys and Synthgirls? It’s a problem we’ve looked at in the past with respect to closed-source projects, and doubtless there will be enterprising electronics shops eyeing this one up. By our observation though it seems to be those projects with cheaper bills of materials which suffer the most from clones, so perhaps that higher-end choice of parts will work in their favour.
Either way we look forward to more open-source from Randomwaves in the future, and if you’d like to buy either instrument you can go to their website.
Thanks [Eilís] for the tip.
A Scratch-Built Commodore 64, Turing Style
Building a Commodore 64 is among the easier projects for retrocomputing fans to tackle. That’s because the C64’s core chipset does most of the heavy lifting; source those and you’re probably 80% of the way there. But what if you can’t find those chips, or if you want more of a challenge than plugging and chugging? Are you out of luck?
Hardly. The video below from [DrMattRegan] is the first in a series on his scratch-built C64 that doesn’t use the core chipset, and it looks pretty promising. This video concentrates on building a replacement for the 6502 microprocessor — actually the 6510, but close enough — using just a couple of EPROMs, some SRAM chips, and a few standard logic chips to glue everything together. He uses the EPROMs as a “rulebook” that contains the code to emulate the 6502 — derived from his earlier Turing 6502 project — and the SRAM chips as a “notebook” for scratch memory and registers to make a Turing-complete random access machine.
[DrMatt] has made good progress so far, with the core 6502 CPU built on a PCB and able to run the Apple II version of Pac-Man as a benchmark. We’re looking forward to the rest of this series, but in the meantime, a look back at his VIC-less VIC-20 project might be informative.
Continue reading “A Scratch-Built Commodore 64, Turing Style”
Virtual Nodes, Real Waves: A Colpitts Walkthrough
If you’ve ever fumbled through circuit simulation and ended up with a flatline instead of a sine wave, this video from [saisri] might just be the fix. In this walkthrough she demonstrates simulating a Colpitts oscillator using NI Multisim 14.3 – a deceptively simple analog circuit known for generating stable sine waves. Her video not only shows how to place and wire components, but it demonstrates why precision matters, even in virtual space.
You’ll notice the emphasis on wiring accuracy at multi-node junctions, something many tutorials skim over. [saisri] points out that a single misconnected node in Multisim can cause the circuit to output zilch. She guides viewers step-by-step, starting with component selection via the “Place > Components” dialog, through to running the simulation and interpreting the sine wave output on Channel A. The manual included at the end of the video is a neat bonus, bundling theory, waveform visuals, and circuit diagrams into one handy PDF.
If you’re into precision hacking, retro analogue joy, or just love watching a sine wave bloom onscreen, this is worth your time. You can watch the original video here.
Continue reading “Virtual Nodes, Real Waves: A Colpitts Walkthrough”
How Supercritical CO2 Working Fluid Can Increase Power Plant Efficiency
Using steam to produce electricity or perform work via steam turbines has been a thing for a very long time. Today it is still exceedingly common to use steam in this manner, with said steam generated either by burning something (e.g. coal, wood), by using spicy rocks (nuclear fission) or from stored thermal energy (e.g. molten salt). That said, today we don’t use steam in the same way any more as in the 19th century, with e.g. supercritical and pressurized loops allowing for far higher efficiencies. As covered in a recent video by [Ryan Inis], a more recent alternative to using water is supercritical carbon dioxide (CO2), which could boost the thermal efficiency even further.
In the video [Ryan Inis] goes over the basics of what the supercritical fluid state of CO2 is, which occurs once the critical point is reached at 31°C and 83.8 bar (8.38 MPa). When used as a working fluid in a thermal power plant, this offers a number of potential advantages, such as the higher density requiring smaller turbine blades, and the potential for higher heat extraction. This is also seen with e.g. the shift from boiling to pressurized water loops in BWR & PWR nuclear plants, and in gas- and salt-cooled reactors that can reach far higher efficiencies, as in e.g. the HTR-PM and MSRs.
In a 2019 article in Power the author goes over some of the details, including the different power cycles using this supercritical fluid, such as various Brayton cycles (some with extra energy recovery) and the Allam cycle. Of course, there is no such thing as a free lunch, with corrosion issues still being worked out, and despite the claims made in the video, erosion is also an issue with supercritical CO2 as working fluid. That said, it’s in many ways less of an engineering issue than supercritical steam generators due to the far more extreme critical point parameters of water.
If these issues can be overcome, it could provide some interesting efficiency boosts for thermal plants, with the caveat that likely nobody is going to retrofit existing plants, supercritical steam (coal) plants already exist and new nuclear plant designs are increasingly moving towards gas, salt and even liquid metal coolants, though secondary coolant loops (following the typical steam generator) could conceivably use CO2 instead of water where appropriate.
Continue reading “How Supercritical CO2 Working Fluid Can Increase Power Plant Efficiency”
EInk PDA Revisited
In the dark ages, before iOS and Android phones became ubiquitous, there was the PDA. These handheld computers acted as simple companions to a computer and could often handle calendars, email, notes and more. Their demise was spelled by the smartphone, but the nostalgia of having a simple handheld and romanticizing about the 90’s and 2000’s is still there. Fortunately for the nostalgic among our readers, [Ashtf] decided to give us a modern take on the classic PDAs.
British Wartime Periscope: A Peek Into The Past
We all know periscopes serve for observation where there’s no direct line-of-sight, but did you know they can allow you to peer through history? That’s what [msylvain59] documented when he picked up a British military night vision periscope, snagged from a German surplus shop for just 49 euros. Despite its Cold War vintage and questionable condition, the unit begged for a teardown.
The periscope is a 15-kilo beast: industrial metal, cryptic shutter controls, and twin optics that haven’t seen action since flares were fashionable. One photo amplifier tube flickers to greenish life, the other’s deader than a disco ball in 1993. With no documentation, unclear symbols, and adjustment dials from hell, the teardown feels more like deciphering a British MoD fever dream than a Sunday project. And of course, everything’s imperial.
Despite corrosion, mysterious bulbs, and non-functional shutters, [msylvian59] uncovers a fascinating mix of precision engineering and Cold War paranoia. There’s a thrill in tracing light paths through mil-spec lenses (the number of graticules seen that are etched on the optics) and wondering what secrets they once guarded. This relic might not see well anymore, but it sure makes us look deeper. Let us know your thoughts in the comments or share your unusual wartime relics below.
Continue reading “British Wartime Periscope: A Peek Into The Past”