How Did We Get To The Speed Of Light?

Every high school physics student knows c, or the speed of light, it’s 3 x 10^8 metres per second. More advanced or more curious students will know that this is an approximation, and the figure of 299,792,458 metres per second that forms the officially accepted figure comes from a resonance of the caesium atom from which is derived a value for the second.

Galileo
Galileo Galilei, whose presence in this story should come as no surprise. Justus Sustermans, Public domain.

But for those who are really curious about measuring the speed of light the question remains: Just how did we arrive at that figure and how long have we been measuring it? The answer contains some surprises, and some exceptionally clever scientific thought and experimentation over the centuries.

The nature of light and whether it had a speed at all had been puzzling philosophers and scientists since antiquity, but the first experiments performed in an attempt to measure it were you will not be surprised to hear, performed by Galileo sometime in the early 17th century. His experiment involved his observation of assistants uncovering lanterns at known distances away, and his observations  failed to arrive at a figure.

Later that century in 1676 the first numerical estimate of the speed of light was made by the Danish astronomer Ole Rømer, who observed an apparent variation in the period of one of Jupiter’s moons depending upon whether the Earth was approaching it or moving away from it. From this he was able to estimate the time taken for light to cross the Earth’s orbit, and from there the mathematician Christiaan Huygens was able to produce a figure of 220,000,000 metres per second.

Spinning Cogs And Mirrors: Time Of Flight

The mile-long evacuated tube used in Michelson's time-of-flight experiment. H.
The mile-long evacuated tube used in Michelson’s time-of-flight experiment. H. H. Dunn, Public domain.

The experiments with which we will perhaps be the most familiar are the so-called time of flight measurements, which take Galileo’s idea of observing the delay as light travels over a distance, and bring to it ever higher precision. This was first performed in the middle of the 19th century by the French physicist Hippolyte Fizeau, who reflected a beam of light from a mirror over several kilometres, and used a toothed wheel to chop it into pulses. The pulses could be increased in frequency by moving the wheel faster until the time taken for the light to travel the distance from wheel to mirror and back again matched the separation between teeth and the returning pulse could be observed. His calculation of 313,300,000 metres per second was successively improved upon through the work of succession of others including Léon Foucault, culminating in the series of experiments by the American physicist Albert A. Michelson in the 1920s. Michelson’s final figure stood at 299,774,000 metres per second, measured through a multi-path traversal of a mile-long evacuated tube in the California desert. In the second half of the century the techniques shifted to laser interferometry, and in the quest to define the SI units in terms of constants, eventually to the definition mentioned in the first paragraph.

The most fascinating part of the story probably encapsulates the essence of scientific discovery, namely that while to arrive at something takes the work of many scientists building on the work of each other, it can then often be rendered into a form that can be understood by a student who hasn’t had to pass through all that effort. We could replicate Fizeau and Michelson’s experiments with a pulse generator, laser diode, and oscilloscope, which while of little scientific value nearly a century after Michelson’s evacuated tube, is still immensely cool. Has anyone out there given it a try?

Header image: Tommology, CC BY-SA 4.0.

Galaxy Users Accuse Samsung Of Throttling Performance And Benchmark Rigging

A lot of Samsung Galaxy users think that Samsung has been throttling smartphone performance, so much so that they don’t live up to their published specifications. At issue is the game optimizing service (GOS) which is intended to throttle the CPU while playing games to prevent overheating. S22 owners have recently discovered that it’s not only games that are throttled, but there’s a list of over 10,000 apps which are subject to GOS control, and there is no way to disable it.

What they’re really upset over is the fact that popular benchmarking apps are not subject to GOS throttling — something that’s hard to see as anything but a blatant attempt to game the system. In fact, this past weekend the folks at Geekbench banned four generations of Samsung Galaxy phones (S10, S20, S21, S22) for benchmark manipulation.

Admittedly, thermal management is critical on today’s incredibly powerful handheld devices, and the concept of throttling is an accepted solution in the industry. But people are upset at the opaqueness and lack of control of GOS, not to mention cherry picking apps in order to excel at benchmarks. Furthermore Samsung has removed their vapor chamber cooling system from recent models. This makes GOS even more important and looks like a cost-savings measure that may have backfired. Currently there’s a petition with the government claiming false advertising, and users are actively pursuing a lawsuit against Samsung.

Reflow Hotplate Teardown Uncovers The Bare Minimum

[EEforEveryone] is trying to find a good hot plate for reflow soldering. After trying one cheap unit, he got another one. He was a bit underwhelmed. The grounding was suspect and the bed wasn’t totally flat. He tore it apart and was surprised that there was very little inside. While the construction wasn’t perfect, it was better than the previous unit. You can see a video of the teardown and review below.

Before powering it up, the first order of business was to rewire the ground system. After that, it was time to try it. However, by confusing Fahrenheit and Centigrade, he set the temperature much higher than necessary which creating a little smoke. Fixing the temperature helped, but there was still a bit of a smoky smell that eventually subsided.

The verdict? The hot plate worked well enough, but you probably do want to check the ground wiring before using it. That’s often a good idea where cheap equipment is concerned, anyway. But the real takeaway is that it looks like you could homebrew something equivalent without much trouble. The controller is an off-the-shelf module. A switch and a plug aren’t hard to figure out. The heating element could be a silicone heater or PCB heater meant for a 3D printer.

Of course, there are other options. You could use a wok. Or why not a waffle iron? You can also make a custom PCB.

Continue reading “Reflow Hotplate Teardown Uncovers The Bare Minimum”

The Fliegerfaust Roars Back To Life After 77 Years

As their prospects for victory in the Second World War became increasingly grim, the Germans developed a wide array of outlandish “Wonder Weapons” that they hoped would help turn the tide of the war. While these Wunderwaffe obviously weren’t enough to secure victory against the Allies, many of them represented the absolute state-of-the-art in weapons development, and in several cases ended up being important technological milestones. Others faded away into obscurity, sometimes with little more then anecdotal evidence to prove they ever even existed.

One of these forgotten inventions is the Fliegerfaust, a portable multi-barrel rocket rocket launcher designed for use against low-flying attack planes. Although thousands were ordered to defend Berlin in 1945, fewer than 100 were ever produced, and there’s some debate about how many actually survived the war. But that didn’t stop [Jonathan Wild] of Wild Arms Research & Development from building a functional replica of the weapon based on contemporary documentation and blueprints.

Building the launcher was relatively straightforward, as it’s little more than nine tubes bundled together with a handle and a simplistic electric igniter. The trick is in the 20 mm (0.78 inch) rockets themselves, which are spin stabilized by the exhaust gasses exiting the four angled holes on the rear. With no fins or active guidance the path of each rocket is somewhat unpredictable, but this was known to be true of the original as well.

Continue reading “The Fliegerfaust Roars Back To Life After 77 Years”

WebGPU… Better Than WebGL?

As the browser becomes more like an operating system, we are seeing more deep features being built into them. For example, you can now do a form of assembly language for the browser. Sophisticated graphics have been around using WebGL since around 2011, but some people find it hard to use. [Surma] was one of those people and tried a new method that is just surfacing to do the same thing: WebGPU.

[Surma] liked it better and shares a lot of information in the post and — oddly — the post doesn’t use WebGPU for graphics very much. Instead, the post focuses on using GPU cores for fast computation, something else you can do with WebGPU. If your goal is to draw on the screen, though, you need to know the basics and the post links to a site with examples of doing this.

Continue reading “WebGPU… Better Than WebGL?”

VFD Character Display Turned Into Audio VU Meter

Humans love visualising music, whether it’s in the form of an inscrutable equation drawing squiggles in Winamp, or a simple VU meter pulsing with the beat. This build from [mircemk] is of the latter variety, repurposing a VFD display to do the job.

The project is built around a VFM202MDA vacuum fluorescent display, which provides that lovely green-blue glow we all know and love, driven by a PT6314 driver chip. This has the benefit that it can be readily driven by a microcontroller in much the same way as the familiar HD44780 character LCD driver chip. With some minor tweaks, the character set can be modified to allow the display to become a surprisingly-responsive VU meter.

An Arduino Nano runs the show, with an envelope follower circuit feeding a signal for the left and right channels into the analog inputs of the microcontroller. The Arduino then measures the voltage on those inputs and feeds the necessary commands to the PT6314 driver to update the display.

The resulting VU meter has 38 bars per channel, and is highly responsive. The fast flickering of the meter bars in response to the music make it compelling to watch, and the era-appropriate enclosure the project is built in adds plenty to the aesthetic.

We’ve seen other VU meter builds before too, like this one that uses a little physics knowledge to create a more realistic analog-like needle meter. Video after the break.
Continue reading “VFD Character Display Turned Into Audio VU Meter”

Building A Pendulum Clock Out Of Lego

Pendulum clocks aren’t used quite as often these days as their cumbersome mechanics and timekeeping abilities have long been outshone by electronic alternatives. However, they’re still fun and they do work, so [PuzzLEGO] set about building a working example with Lego.

The rear view reveals the escapement built from Lego Technic parts.

The core of the clock is the escapement, a linkage which the pendulum can only turn in one direction. As the pendulum swings once per second, it lets the escapement gear turn one notch forward at a time, turning the gears of the clock which drive the hands. It’s powered with a falling weight in the form of a drink bottle full of water, which turns the gears of the clock via a chain.

The clock can only run for approximately an hour, so it’s set up with a second and minute hand instead of the more usual minute and hour hand. However, with the pendulum tuned to the appropriate length and the weight fitted, it pleasantly ticks and tocks the seconds away.

We’ve seen other great builds from [PuzzLEGO] before, too, like this inventive Rubik’s Cube build. Video after the break.

Continue reading “Building A Pendulum Clock Out Of Lego”