Teardown: Verizon AC791L Jetpack 4G Mobile Hotspot

The saying “time and tide wait for no man” is usually used as a verbal kick in the pants, a reminder that sometimes an opportunity must be seized quickly before it passes by. But it can also be interpreted as a warning about the perpetual march of time and how it impacts the world around us. In that case, we would do well to add cellular technology to the list of proverbial things that wait for no one. Do you need 5G? No. Do you want it? Probably not. But it’s here, so be a good consumer and dump all your 4G hardware in the name of technical progress.

This line of logic may explain how the Verizon-branded Netgear AC791L 4G “Jetpack” hotspot you see here, despite being in perfect working order, found itself in the trash. The onset of 5G must have been particularly quick for the previous owner, since they didn’t even bother to wipe their configuration information from the device. In the name of journalistic integrity I won’t divulge the previous owner’s identity; but I will say that their endearing choice of WPA2 key, iluvphysics, makes for a nice fit with our publication.

A quick check of eBay shows these devices, and ones like it, are in ample supply. At the time of this writing, there were more than 1,500 auctions matching the search term “Verizon jetpack”, with most of them going for between $20 and $50 USD. We like cheap and easily obtainable gadgets that can be hacked, but is there anything inside one of these hotspots that we can actually use? Let’s find out.

Continue reading “Teardown: Verizon AC791L Jetpack 4G Mobile Hotspot”

Oh Deere, Is That Right To Repair Resolution Troubling You?

Over the years a constant in stories covering the right to repair has come from an unexpected direction, the farming community. Their John Deer tractors, a stalwart of North American agriculture, have become difficult to repair due to their parts using DRM restricting their use to authorised Deere agents. We’ve covered farmers using dubious software tools to do the job themselves, we’ve seen more than one legal challenge, and it’s reported that the price of a used Deere has suffered as farmers abandon their allegiance to newer green and yellow machines. Now comes news of a new front in the battle, as a socially responsible investment company has the tractor giant scrambling to block their shareholder motion on the matter.

Deere have not been slow in their fight-back against the threat of right-to-repair legislation and their becoming its unwilling poster-child, with CTO Jahmy Hindman going on record stating that 98% of repairs to Deere machinery can be done by the farmer themself (PDF, page 5) without need for a Deere agent. The question posed by supporters of the shareholder action is that given the substantial risk to investors of attracting a right-to-repair backlash, why would they run such a risk for the only 2% of repairs that remain? We’d be interested to know how Deere arrived at that figure, because given the relatively trivial nature of some of the examples we’ve seen it sounds far-fetched.

It’s beyond a doubt that Deere makes high-quality agricultural machinery that many farmers, including at least one Hackaday scribe, have used to raise a whole heap of crops. The kind of generational brand loyalty they have among their customers simply can’t be bought by clever marketing, it’s been built up over a century and a half. As spectators to its willful unpicking through this misguided use of their repair operation we hope that something like this shareholder move has the desired effect of bringing it to a close. After all, it won’t simply be of benefit to those who wish to repair their tractor, it might just rescue their now-damaged brand before it’s too late.

Curious about previous coverage on this ongoing story? This article from last year will give context.

Header image: Nheyob / CC BY-SA 4.0

DIY Semi Auto Grinder Builds Itself (Sort Of)

[JSK-koubou] is no stranger to making tools to improve their work, and this latest video is yet another in a long list of such builds, just checkout their YT channel to see the many other examples. The tool being highlighted this time is a semi-automatic grinder (Video, embedded below) which could be very handy in many situations.

Many of us struggle a little to get straight cuts with an angle grinder, especially with softer materials, as it is sometimes hard to get a good ‘feel’ of how the cut is proceeding. Once the cut is started, thin blades will tend to ‘track’ in the slot, so if it starts off a little bit, the whole cut will be off. Most annoying. Anything to help keep things straight and square would help a lot, with the extra feature of a motorized drive enabling a constant cut rate, and presumably giving an increase in the cut quality.

Using the part completed rig to cut its own leadscrew

Since operation is hands-off, you could set it up, and leave it to do its thing, whilst you step aside, away from flying sparks, noise and the remote possibility of getting a splintered blade in your face, should the unthinkable happen. All good things.

The detailed build video shows what looks like a pretty solid construction, there are plans available on the accompanying website, but they do request a small donation of ¥1000 (less than $10 USD) to download them. Given the usefulness of the tool, this seems like a small price to pay. We quite liked some sections of the build video, where the tool is used to cut its own components, as it is built-up sequentially. Clever stuff! Another interesting technique to see was the use of a flame-heated (Stanley) knife blade as a drive belt end-jointer. Somewhat tough on the blade, but it’s a consumable item and gets the job done, so that’s good enough for us!

Parts wise, there’s nothing special at all here, with most easily sourced via the usual mechanical suppliers, but we reckon you’d be able to find most of it on eBay as well. We think this is exactly the sort of build that would work well in your local Makerspace, so perhaps give that a thought?

Bored with manually cutting off? Need an overkill solution for a mundane job? How about an Automatic Cut-Off Saw? If you need some defense against the mighty angle grinder, then perhaps Proteus is just the ticket?

Continue reading “DIY Semi Auto Grinder Builds Itself (Sort Of)”

Pit Your Wits Against British Spooks

The festive season is upon us, and for Brits of a technical bent that means it’s time for the GCHQ Christmas Challenge. Sent out annually as part of the Christmas card from the UK’s intelligence centre, this is a chance for would-be spooks to pit their wits against some of the nation’s cleverest cryptologists whose work you’ll never have heard of.

This year the puzzle is aimed at those with a secondary school education, in the hope of fostering an interest in maths and science in younger people. It’s a series of puzzles of ascending difficulty, but don’t be lulled into a false sense of security by the earlier ones being easy, to complete the set will still require some brain power.

We’re guessing that as in previous years, this puzzle will garner a significant quantity of entries. It’s a successful public relations exercise from the agency which like all such organisations has felt its fair share of controversy in its time. There may thus be readers who regard it with some suspicion, but it’s fair to say it’s not the only such popular exercise from a govenment agency. If meanwhile you fancy a bit of GCHQ history, we caught their Science Museum exhibition back in 2019.

Anr air quality sensor mounted on a bike's handlebar

Measuring Air Quality Using Mobile Sensors For The Masses

Poor air quality is a major problem for city dwellers the world over. Dust, smoke, particles and noxious gases from vehicles, industry and agriculture makes many megacities downright hazardous to live in. Pinpointing the source of pollution and developing strategies for mitigation requires accurate data on pollutant levels, but obtaining these numbers is not always easy.

Enter CanAirIO, a citizen science project that aims to gather air quality data from around the world by putting sensors into the hands of as many people as possible. Its team has developed two different sensor nodes for this purpose: an indoor one that can measure CO2, and a mobile one that can measure particulate matter (PM) levels. Both versions are powered by an ESP32 microcontroller that reads out the air quality sensors and connects to the Internet using WiFi or BlueTooth. The data can then be shared online to create detailed maps showing local variations in air quality.

The design of the sensor nodes is fully open-source, allowing anyone with basic electronic skills to build them. The sensors are a Sensirion SCD30 for CO2 measurement and an SPS30 for PM levels. The mobile version comes with a neat 3D-printed enclosure that can be mounted on a bike’s handlebar, enabling the user to quickly gather data around their neighbourhood. A mobile app simplifies setting up the sensors and sharing the data.

The project has already been successful in gathering detailed data in the city of Bogotá, Colombia, and will no doubt prove useful in many other pollution hotspots around the world. We’ve seen similar community efforts to monitor air pollution and even radiation in various places, both showing how relatively simple devices can help to make a difference in people’s wellbeing. Continue reading “Measuring Air Quality Using Mobile Sensors For The Masses”

Self balancing wheeled robot with auto-righting arms lofted high

A Self Righting Balancing Robot Configured The Easy Way

Norwegian electronics hacker [Hans Jørgen] aka [time expander] on YouTube, has a clear interest in robotics, and for his latest effort, decided that it was time to build a custom controller platform. Since [Hans] had a pile of Dynamixel servo motors lying around to test it with, a good first project for the platform was a simple self-balancing wheeled robot. (Video, embedded below)

We say ‘simple’ but that isn’t really the case, as there is a fair bit going on to get this to work. The first problem, is sensing, which was quickly solved with the excellent BMO055 IMU chip. Next, what to do when it falls over? Simply adding some servo-controlled arms, allowed the robot to flip itself back upright. Control is covered with a ESP32-WROOM-32D module from our friends at Espressif, which enables remote firmware uploading over the air (OTA update) as well as parameter tuning. In order to implement the latter, [Hans] chose to use bonjour/mDNS which is an implementation of zero-configuration networking. This gets the ESP32 onto the WiFi, but it isn’t immediately obvious how to connect to it, without a little digging around. To simply connection, [Hans] implemented a dynamic QR code via the connected OLED. This is just one of the those tiny 0.96″ displays that you see touted all over our corners of the internet.

Simply by scanning the QR code with any compatible device to hand brings up a simple configuration web page, allowing one to tweak the PID controller parameters, and get that balancing robot into check. Great stuff!

The PCB was designed in Eagle, firmware for the ESP32 is available, 3D models for the plastic are designed with fusion 360, and [Hans] is even currently working on some preliminary Alexa integration. What a fun project!

All the above, albeit an early cut (look out for bugs!) is available on the project GitHub for your viewing pleasure.

We’re no stranger to self-balancing 3D-printed bots, whilst you’re here, why not checkout A problematic Self-Balancing Sonic the Hedgehog? If wheeled bots aren’t your cup-of-tea, there’s a not-at-all freaky one-legged bouncing bot that may be of interest.

Continue reading “A Self Righting Balancing Robot Configured The Easy Way”

An Open Source Detector For Identifying Plastics

One of the challenges involved in recycling plastic is determining the specific type of plastic a given item is actually made of. To keep up with demand, large scale recycling centers rely on various automated systems to separate different types of plastic from a stream of incoming material. But in less technologically advanced parts of the world, workers can find themselves having to manually identify plastic objects; a time consuming and error-prone process.

To try and improve on the situation, [Jerry de Vos], [Armin Straller], and [Jure Vidmar] have been working on a handheld open hardware device that they refer to simply enough as the Plastic Scanner. The hope is that their pocket-sized unit could be used in the field to positively identify various types of plastic by measuring its reflectivity to infrared light. The device promises to be very easy to operate, as users simply need to bring the device close to a piece of plastic, push the button, and wait for the information to pop up on the OLED display.

Or at least, that’s the idea. While the team eventually hopes to release a kit to build your own handheld Plastic Scanner, it seems that the hardware isn’t quite ready for production. The most recent work appears to have been put in, not unexpectedly, the development board that lets the team refine their process. The development unit combines an array of IR LEDs with wavelengths ranging from 850 to 1650 nanometers, a InGaAs photodiode connected to an ADS1256 24-bit analog-to-digital converter (ADC), and an Arduino Uno. In comparison, the final hardware uses a Raspberry Pi Zero and a smaller “breakout board” that contains the sensor and IR LEDs.

Browsing through the software repository for the project, we can see the device uses Python, TensorFlow Lite, and a database of IR reflectivity values for known plastics to try and determine the closest match. Obviously the accuracy of such a system is going to be highly dependent on the quantity of known-good data, but at least for now, it appears the user is responsible for building up their own collection or IR values.

As interesting as this project is, we’re a bit skeptical about its purely optical approach to identifying plastics. Automated recycling centers do use infrared spectroscopy, but it’s only one tool of many that are employed. Without additional data points, such as the density or electrostatic properties of the plastic being tested, it seems like the Plastic Scanner would have a fairly high margin of error. Just taking into account the wide array of textures and colors the user is likely to encounter while using the device will be a considerable challenge.

Continue reading “An Open Source Detector For Identifying Plastics”