As an electromagnetic radiation phenomenon, it’s perhaps not so surprising that light is affected by a magnetic field. This Faraday effect (FE) has been used since its discovery by [Michael Faraday] in 1845 for a wide range of applications, allowing for the manipulation of light’s polarization, something which is very useful in the field of optics, for remote sensing and spintronics. Despite this being such a well-known property of EM radiation a recent study claims to have made a new discovery here, with what they claim is about the ‘optical magnetic field’.
Their central claim is that it is not just the electrical component that contributes to the FE, but also the magnetic one, due to Zeeman energy that expresses itself from the magnetic component as a form of inverse FE. Based on their experimental findings they estimate that it contributes to the final measured FE by about 17% at a wavelength of 800 nm.
While definitely a very niche physics paper, and with no immediate implications, if independently confirmed it could deepen our understanding of the Faraday effect, and how to use it in future technologies.







