PicoNtrol Brings Modern Controllers To Atari 2600

While there’s an argument to be made that retro games should be experienced with whatever input device they were designed around, there’s no debating that modern game controllers are a lot more ergonomic and enjoyable to use than some of those early 8-bit entries.

Now, thanks to the PicoNtrol project from [Reogen], you can use the latest Xbox and PlayStation controllers with the Atari 2600 via Bluetooth. Looking a bit farther down the road the project is aiming to support the Nintendo Entertainment System, and there’s work being done to bring the Switch Pro Controller into the fold as well.

Continue reading “PicoNtrol Brings Modern Controllers To Atari 2600”

Hackaday Podcast Episode 266: A Writer’s Deck, Patching Your Battleship, And Fact-Checking The Eclipse

Before Elliot Williams jumps on a train for Hackaday Europe, there was just enough time to meet up virtually with Tom Nardi to discuss their favorite hacks and stories from the previous week. This episode’s topics include the potential benefits of having a dual-gantry 3D printer, using microcontrollers to build bespoke note taking gadgets, the exciting world of rock tumbling, and the proper care and maintenance required to keep your World War II battleship in shape. They’ll also go over some old school keyboard technologies, DIP chip repairs, and documenting celestial events with your home solar array. By the end you’ll hear about the real-world challenges of putting artificial intelligence to work, and how you can safely put high-power lithium batteries to work in your projects without setting your house on fire.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download for off-line listening.

Continue reading “Hackaday Podcast Episode 266: A Writer’s Deck, Patching Your Battleship, And Fact-Checking The Eclipse”

DIY 6 GHZ Pulse Compression Radar

Conceptually, radar is pretty simple: send out a radio wave and time how long it takes to get back via an echo. However, in practice, there are a number of trade-offs to consider. For example, producing a long pulse has more energy and range, but limits how close you can see and also the system’s ability to resolve objects that are close to each other. Pulse compression uses a long transmission that varies in frequency. Reflected waves can be reconstituted to act more like a short pulse since there is information about the exact timing of the reflected energy. [Henrik] didn’t want to make things too easy, so he decided to build a pulse compression radar that operates at 6 GHz.

In all fairness, [Henrik] is no neophyte when it comes to radar. He’s made several more traditional devices using a continuous wave architecture. However, this type of radar is only found in a few restricted applications due to its inherent limitations. The new system can operate in a continuous wave mode, but can also code pulses using arbitrary waveforms.

Some design choices were made to save money. For example, the transmitter and receiver have limited filtering. In addition, the receiver isn’t a superheterodyne but more of a direct conversion receiver. The signal processing is made much easier by using a Zynq FPGA with a dual-core ARM CPU onboard. These were expensive from normal sources but could be had from online Chinese vendors for about $17. The system could boot Linux, although that’s future work, according to [Henrik].

At 6 GHz, everything is harder. Routing the PCB for DDR3 RAM is also tricky, but you can read how it was done in the original post. To say we were impressed with the work would be an understatement. We bet you will be too.

Radar has come a long way since World War II and is in more places than you might guess. We hate to admit it, but we’d be more likely to buy a ready-made radar module if we needed it.

Hackaday Podcast Episode 265: Behind The Epic SSH Hack, 1980s Cyber Butler, The Story Of Season 7

This week, Editor-in-Chief Elliot Williams and Kristina Panos convened once again to give the lowdown on this week’s best hacks. First up in the news — it’s giga-sunset time for Gigaset IoT devices, which simultaneously became paperweights on March 29th. And all that Flipper Zero panic? It has spread to Australia, but still remains exactly that: panic.

Then it’s on to What’s That Sound. Kristina failed again, although she was in the right neighborhood. Can you get it? Can you figure it out? Can you guess what’s making that sound? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

Then it’s on to the hacks, beginning with the terrifying news of an xz backdoor. From there, we marvel at a 1980s ‘butler in a box’ — a voice-activated home automation system — and at the idea of LoRa transmissions without a radio. Finally, we discuss why you don’t want to piss off Trekkies, and whether AI has any place in tech support.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast Episode 265: Behind The Epic SSH Hack, 1980s Cyber Butler, The Story Of Season 7”

6502 Hacking Hack Chat

Join us on Wednesday, April 3rd at noon Pacific for the 6502 Hacking Hack Chat with Anders Nielsen!

Back in the early days of the personal computing revolution, you could have any chip you wanted…as long as it was 8-bits. We’ve come a long way since then, and while nobody seriously hopes for a wholesale return to the time when a Commodore 64 or Apple II was the home computing power play, there’s still a lot to be said for the seat-of-the-pants feeling of the day. Our engineering forebears had their work cut out for them, and building the home PC revolution from the ground up with microprocessors that by today’s standards were laughably limited is something worth celebrating.

join-hack-chatEvery retrocomputing enthusiast has their own favorite chip, and for Anders, it’s obviously the 6502 — enough to give birth to his 65uino project, which put the storied microprocessor at the heart of an Arduino pin-compatible microcontroller. It’s a neat project that seems to have caught a lot of people’s imaginations and opened up a world of hardware and software hacks that modern hardware just doesn’t need.

Getting closer to the silicon is the goal of retrocomputing, and Anders is making it easy to get involved. And we’re lucky enough to have him stop by the Hack Chat to talk all about teaching the 6502 some 21st-century tricks. Stop by and join in the discussion, and maybe you’ll catch the 8-bit bug too.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 3 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Hackaday Podcast Episode 264: Cheap Minimills, 65-in-1 Electronics, And Time On Moon

It was Dan’s turn behind the mic with Elliot this time as we uncovered the latest from the world of hacking, and what an eclectic mix it was. It was slightly heavy on machining, with a look at mini-mills that are better than nothing, and a DIY DRO that’s A-OK. We also kicked the nostalgia bucket over — whatever that means — and got a new twist on the old “65-in-1” concept, found hidden code in 80s music, and looked at color TV in the US and how it got that way. We’ve got ample alliteration about grep, thoughts about telling time on the Moon, and what does Canada have against the poor Flipper Zero, anyway?

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 264: Cheap Minimills, 65-in-1 Electronics, And Time On Moon”

This Week In Security: Peering Through The Wall, Apple’s GoFetch, And SHA-256

The Linux command wall is a hold-over from the way Unix machines used to be used. It’s an abbreviation of Write to ALL, and it was first included in AT&T Unix, way back in 1975. wall is a tool that a sysadmin can use to send a message to the terminal session of all logged-in users. So far nothing too exciting from a security perspective. Where things get a bit more interesting is the consideration of ANSI escape codes. Those are the control codes that moves the cursor around on the screen, also inherited from the olden days of terminals.

The modern wall binary is actually part of util-linux, rather than being a continuation of the old Unix codebase. On many systems, wall runs as a setgid, so the behavior of the system binary really matters. It’s accepted that wall shouldn’t be able to send control codes, and when processing a message specified via standard input, those control codes get rejected by the fputs_careful() function. But when a message is passed in on the command line, as an argument, that function call is skipped.

This allows any user that can send wall messages to also send ANSI control codes. Is that really a security problem? There are two scenarios where it could be. The first is that some terminals support writing to the system clipboard via command codes. The other, more creative issue, is that the output from running a binary could be overwritten with arbitrary text. Text like:
Sorry, try again.
[sudo] password for jbennett:

You may have questions. Like, how would an attacker know when such a command would be appropriate? And how would this attacker capture a password that has been entered this way? The simple answer is by watching the list of running processes and system log. Many systems have a command-not-found function, which will print the failing command to the system log. If that failing command is actually a password, then it’s right there for the taking. Now, you may think this is a very narrow attack surface that’s not going to be terribly useful in real-world usage. And that’s probably pretty accurate. It is a really fascinating idea to think through, and definitively worth getting fixed. Continue reading “This Week In Security: Peering Through The Wall, Apple’s GoFetch, And SHA-256”